
Mini-HOWTO on using Otave for Unonstrained

Nonlinear Optimization
∗

Nonlinear optimization problems are very ommon and when a solution annot

be found analytially, one usually tries to �nd it numerially. This doument shows

how to perform unonstrained nonlinear minimization using the Otave language

for numerial omputation. We assume to be so luky as to have an initial guess

from whih to start an iterative method, and so impatient as to avoid as muh

as possible going into the details of the algorithm. In the following examples, we

onsider multivariable problems, but the single variable ase is solved in exatly the

same way.

All the algorithms used below return numerial approximations of loal minima

of the optimized funtion. In the following examples, we minimize a funtion with

a single minimum (Figure 1), whih is relatively easily found. In pratie, suess

of optimization algorithms greatly depend on the optimized funtion and on the

starting point.

A simple example

We will use a all of the type

[x_best, best_value, niter℄ = minimize (fun, x_init)

to �nd the minimum of

f : (x1, .x2, x3) ∈ R
3

−→ (x1 − 1)
2
/9 + (x3 − 1)

2
/9 + (x3 − 1)

2
/9

− cos (x1 − 1) − cos (x2 − 1) − cos (x3 − 1) .

The following ommands should �nd a loal minimum of f(), using the Nelder-

Mead (aka �downhill simplex�) algorithm and starting from a randomly hosen point

x0 :

∗Author : Etienne Grossmann <etienne�isr.ist.utl.pt> (soon replaed by �Otave-Forge
developers�?). This doument is free doumentation; you an redistribute it and/or modify it
under the terms of the GNU Free Doumentation Liense as published by the Free Software
Foundation.
. This is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE.

1

Figure 1: 2D and 1D slies of the funtion that is minimized throughout this

tutorial. Although not obvious at �rst sight, it has a unique minimum.

funtion ost = foo (xx)

xx--;

ost = sum (-os(xx)+xx.^2/9);

endfuntion

x0 = [-1, 3, -2℄;

[x,v,n℄ = minimize ("foo", x0)

The output should look like :

x =

1.00000 1.00000 1.00000

v = -3.0000

n = 248

This means that a minimum has been found in (1, 1, 1) and that the value at that

point is −3. This is orret, sine all the points of the form x1 = 1 + 2iπ, x2 =
1+2jπ, x3 = 1+2kπ, for some i, j, k ∈ N, minimize f(). The number of funtion

evaluations, 248, is also returned. Note that this number depends on the starting

point. You will most likely obtain di�erent numbers if you hange x0.

The Nelder-Mead algorithm is quite robust, but unfortunately it is not very

e�ient. For high-dimensional problems, its exeution time may beome prohibitive.

Using the �rst di�erential

Fortunately, when a funtion, like f() above, is di�erentiable, more e�ient opti-

mization algorithms an be used. If minimize() is given the di�erential of the

optimized funtion, using the "df" option, it will use a onjugate gradient method.

Funtion returning partial derivatives

funtion d = diffoo (x)

x = x(:)' - 1;

d = sin (x) + 2*x/9;

2

endfuntion

[x, v, n℄ = minimize ("foo", x0, "df", "diffoo")

This produes the output :

x =

1.00000 1.00000 1.00000

v = -3

n =

108 6

The same minimum has been found, but only 108 funtion evaluations were needed,

together with 6 evaluations of the di�erential. Here, diffoo() takes the same

argument as foo() and returns the partial derivatives of f() with respet to the

orresponding variables. It doesn't matter if it returns a row or olumn vetor or

a matrix, as long as the ith element of diffoo(x) is the partial derivative of f()
with respet to xi .

Using numerial approximations of the �rst di�er-

ential

Sometimes, the minimized funtion is di�erentiable, but atually writing down its

di�erential is more work than one would like. Numerial di�erentiation o�ers a

solution whih is less e�ient in terms of omputation ost, but easy to implement.

The "ndiff" option of minimize() uses numerial di�erentiation to exeute ex-

atly the same algorithm as in the previous example. However, beause numerial

approximation of the di�erentia is used, the outpud may di�er slightly :

[x, v, n℄ = minimize ("foo", x0, "ndiff")

wih yields :

x =

1.00000 1.00000 1.00000

v = -3

n =

78 6

Note that eah time the di�erential is numerially approximated, foo() is alled 6

times (twie per input element), so that foo() is evaluated a total of (78+6*6=)

114 times in this example.

Using the �rst and seond di�erentials

When the funtion is twie di�erentiable and one knows how to ompute its �rst

and seond di�erentials, still more e�ient algorithms an be used (in our ase, a

3

variant of Levenberg-Marquardt). The option "d2f" allows to speify a funtion

that returns the value of the funtion, the �rst and seond di�erentials of the

minimized funtion. Entering the ommands :

funtion [, d, d2℄ = d2foo (x)

 = foo(x);

d = diffoo(x);

d2 = diag (os (x(:)-1) + 2/9);

end

[x,v,n℄ = minimize ("foo", x0, "d2f", "d2foo")

produes the output :

x =

1.0000 1.0000 1.0000

v = -3

n =

34 5

This time, 34 funtion evaluations, and 5 evaluations of d2foo() were needed.

Summary

We have just seen the most basi ways of solving nonlinear unonstrained opti-

mization problems. The online help system of Otave (try e.g. �help minimize�)

will yield information on other issues, suh as passing extra arguments to the min-

imized funtion, ontroling the termination of the optimization proess, hoosing

the algorithm et.

4

