Mini-HOWTO on using Octave for Unconstrained
Nonlinear Optimization®

Nonlinear optimization problems are very common and when a solution cannot
be found analytically, one usually tries to find it numerically. This document shows
how to perform unconstrained nonlinear minimization using the Octave language
for numerical computation. We assume to be so lucky as to have an initial guess
from which to start an iterative method, and so impatient as to avoid as much
as possible going into the details of the algorithm. In the following examples, we
consider multivariable problems, but the single variable case is solved in exactly the
same way.

All the algorithms used below return numerical approximations of local minima
of the optimized function. In the following examples, we minimize a function with
a single minimum (Figure 1), which is relatively easily found. In practice, success
of optimization algorithms greatly depend on the optimized function and on the
starting point.

A simple example
We will use a call of the type

[x_best, best_value, niter] = minimize (func, x_init)

to find the minimum of

o (x1,a0,23) €RP — (21— 1)°/9+ (z3 — 1)* /9 + (x5 — 1)* /9
—cos (1 — 1) —cos (zg — 1) — cos (x3 — 1).

The following commands should find a local minimum of f(), using the Nelder-
Mead (aka “downhill simplex™) algorithm and starting from a randomly chosen point
x0 :

*Author : Etienne Grossmann <etienne@isr.ist.utl.pt> (soon replaced by “Octave-Forge
developers”?). This document is free documentation; you can redistribute it and/or modify it
under the terms of the GNU Free Documentation License as published by the Free Software
Foundation.

This is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE.



T T T T T
[
A
ey ——— ]
Y=f(x) :
" REE
Wi i
=% o o
" .
% ’
. ’ ]
\ "'
\
L ]
7
\
’
\
L L D L L
-4 =2} ] 2 4 6 ]
— X

Figure 1: 2D and 1D slices of the function that is minimized throughout this
tutorial. Although not obvious at first sight, it has a unique minimum.

function cost = foo (xx)

XX--}
cost = sum (-cos(xx)+xx.72/9);
endfunction

Xo = [_1: 3: _2]:
[x,v,n] = minimize ("foo", x0)

The output should look like :

x =
1.00000 1.00000 1.00000

v = -3.0000

n = 248

This means that a minimum has been found in (1,1,1) and that the value at that
point is —3. This is correct, since all the points of the form z; = 1 + 2im, 2o =
14 2jm, x5 = 1+ 2km, for some i, j, k € IN, minimize f(). The number of function
evaluations, 248, is also returned. Note that this number depends on the starting
point. You will most likely obtain different numbers if you change x0.

The Nelder-Mead algorithm is quite robust, but unfortunately it is not very
efficient. For high-dimensional problems, its execution time may become prohibitive.

Using the first differential

Fortunately, when a function, like f() above, is differentiable, more efficient opti-
mization algorithms can be used. If minimize() is given the differential of the
optimized function, using the "df" option, it will use a conjugate gradient method.

## Function returning partial derivatives
function dc = diffoo (x)

x =x(:) - 1;

dc = sin (x) + 2*x/9;



endfunction
[x, v, n] = minimize ("foo", x0, "df", "diffoo")

This produces the output :

X
.00000 1.00000 1.00000
-3

o=

n =
108 6

The same minimum has been found, but only 108 function evaluations were needed,
together with 6 evaluations of the differential. Here, diffoo() takes the same
argument as foo() and returns the partial derivatives of f() with respect to the
corresponding variables. It doesn't matter if it returns a row or column vector or
a matrix, as long as the ith element of diffoo(x) is the partial derivative of f()
with respect to z; .

Using numerical approximations of the first differ-
ential

Sometimes, the minimized function is differentiable, but actually writing down its
differential is more work than one would like. Numerical differentiation offers a
solution which is less efficient in terms of computation cost, but easy to implement.
The "ndiff" option of minimize() uses numerical differentiation to execute ex-
actly the same algorithm as in the previous example. However, because numerical
approximation of the differentia is used, the outpud may differ slightly :

[x, v, n] = minimize ("foo", x0, "ndiff")
wich vyields :

X
.00000 1.00000 1.00000
-3

o=

[=]
|

78 6

Note that each time the differential is numerically approximated, foo () is called 6
times (twice per input element), so that foo () is evaluated a total of (78+6*6=)
114 times in this example.

Using the first and second differentials

When the function is twice differentiable and one knows how to compute its first
and second differentials, still more efficient algorithms can be used (in our case, a



variant of Levenberg-Marquardt). The option "d2f" allows to specify a function
that returns the value of the function, the first and second differentials of the
minimized function. Entering the commands :

function [c, dc, d2c] = d2foo (x)
c = foo(x);
dc = diffoo(x);
d2c = diag (cos (x(:)-1) + 2/9);
end
[x,v,n] = minimize ("foo", x0, "d2f", "d2foo")

produces the output :

x =
1.0000 1.0000 1.0000

v = -3

n =

34 5

This time, 34 function evaluations, and 5 evaluations of d2foo () were needed.

Summary

We have just seen the most basic ways of solving nonlinear unconstrained opti-
mization problems. The online help system of Octave (try e.g. “help minimize")
will yield information on other issues, such as passing extra arguments to the min-
imized function, controling the termination of the optimization process, choosing
the algorithm etc.



