
1

A Raspberry Pi image with ROS 2 + RT
and a customizable image builder

Shuhao Wu
Oct 21st 2022

ROSCon ‘22 Kyoto

2

● Shuhao Wu
– https://shuhaowu.com

● Masters in Mechanical Engineering
● Staff Production Engineer @ Shopify

– Distributed systems, system performance
● Occasional robotics consultant @ Cactus Dynamics

– Robotics software architecture, advanced technology development
● Also collaborating with the ROS real-time working group

Who am I?

3

Background

● ROS is widely used in the industry, academia, and hobbyist setting
– ~100K users, 1000-2000 citations/year, 600M downloads from ~700k sources1

● Wide skill range
– Beginner: tedious first installation
– Expert: tricky n-th installation

● Real-time applications
– Real-time Linux

1 Interpreted from the 2021 ROS metrics report

4

A downloadable image for ROS 2

● Raspberry Pi image with ROS 2
Humble preinstalled

● Minimal image: ~1GB download
– No GUI, but easily installable

● Easier for newcomers to get started
● Also included: real-time kernel for

real-time applications

5

Real-time and Linux

● Application that has strict deadlines for latency
– Example: inverted pendulum controller

● Latency comes from different sources2

– OS-level (scheduling) latency must be minimized
● Stock Linux kernel is not real-time
● Linux with PREEMPT_RT is “soft” real-time

– Must compile your own real-time kernel!
● This is difficult to do as a newcomer

Scheduling
latency

Application
latency

Time
Your code
runs here

Response time

Hardware
latency

2 More info: https://shuhaowu.com/blog/2022/01-linux-rt-appdev-part1.html

6

Raspberry Pi ROS + RT image

● Image preinstalled with custom-built Linux + PREEMPT_RT
– https://github.com/ros-realtime/linux-real-time-kernel-builder

● RT configurations
– CPU frequency, permissions, kernel options...

● Worst-case scheduling latency measured with validation benchmarks

7

Validation of real-time

● cyclictest: detects worst-case hardware and
scheduling latency

Scheduling
latency

Application
latency

Time
Your code
runs here

Response time

Hardware
latency

8

Validation of real-time

● cyclictest: detects worst-case hardware and
scheduling latency

● Run cyclictest with CPU stress test for 2 hours
– Without CPU stress, latency between RT and

non-RT kernel is similar
– CPU stress made the most impact on latency

compared to other stress (network, disk,
memory)

9

Validation of real-time

● cyclictest: detects worst-case hardware and
scheduling latency

● Run cyclictest with CPU stress test for 2 hours
– Without CPU stress, latency between RT and

non-RT kernel is similar
– CPU stress made the most impact on latency

compared to other stress (network, disk,
memory)

● Non-RT kernel latency is at least 700 μs
– Not suitable for 1000 Hz control loop

● RT kernel latency is ~280 μs??

Ubuntu 20.04
Linux 5.4.140-rt64 and 5.4.0-1052

10

Validation of real-time

● Identified source of latency with ftrace to be
multipathd
– Is a RT process with priority of 99!

● Interrupts cyclictest and introduces latency
– A daemon used for configure multiple I/O

paths for a single storage device
– Not useful for the Raspberry Pi

● Latency with multipathd removed: ~130 μs
● multipathd present on all Ubuntu server

images?

Ubuntu 20.04
Linux 5.4.140-rt64 and 5.4.0-1052

More info on this process: https://shuhaowu.com/blog/2022/02-linux-rt-appdev-part2.html

11

Validation of real-time

● Upgraded from Linux 5.4 5.15→
● Scheduling latency: 130 μs 50 μs→
● Good baseline for a real-time OS image

Ubuntu 22.04
Linux 5.15.39-rt42-raspi

12

Raspberry Pi + ROS 2 + real-time

● Ready for ROS2
● Ready for 1000 Hz real-time applications
● A nice platform for beginners and experts

13

Extendable image builder

● Generic build process with a few files
– Download vendor image
– Extract and mount
– Copy files
– Run scripts via chroot + qemu

● Image builder is scalable to different
single board computers with different
base OSes and different apps

14

Advanced image builder features

● Layer your application on top of the ROS 2 + RT image
– Example: Standard real-time benchmark image
– Example: Real-time Raspberry Pi CI image

● Cross-compilation
● Extensive documentation

jammy-rt

jammy-rt-humble

your-application

15

Summary

● A downloadable ROS + RT image for the Raspberry Pi
– Validated real-time performance
– Useful for getting started

● An extendable image builder for deployment
– Useful for reproducible builds

● Star us on Github: https://github.com/ros-realtime/ros-realtime-rpi4-image
● Special thanks to the ROS real-time working group

– Andrei Kholodnyi, Carlos San Vicente, Christophe Bedard, Lander Usategui

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

