A Raspberry Pi image with ROS 2 + RT and a customizable image builder

Shuhao Wu

Oct 21st 2022

ROSCon '22 Kyoto

Who am I?

- Shuhao Wu
 - https://shuhaowu.com
- Masters in Mechanical Engineering
- Staff Production Engineer @ Shopify
 - Distributed systems, system performance
- Occasional robotics consultant @ Cactus Dynamics
 - Robotics software architecture, advanced technology development
- Also collaborating with the ROS real-time working group

Background

- ROS is widely used in the industry, academia, and hobbyist setting
 - ~100K users, 1000-2000 citations/year, 600M downloads from ~700k sources¹
- Wide skill range
 - Beginner: tedious first installation
 - Expert: tricky *n*-th installation
- Real-time applications
 - Real-time Linux

¹Interpreted from the 2021 ROS metrics report

A downloadable image for ROS 2

- Raspberry Pi image with ROS 2 Humble preinstalled
- Minimal image: ~1GB download
 - No GUI, but easily installable
- Easier for newcomers to get started
- Also included: real-time kernel for real-time applications

Real-time and Linux

- Application that has strict deadlines for latency
 - Example: inverted pendulum controller
- Latency comes from different sources²
 - OS-level (scheduling) latency must be minimized
- Stock Linux kernel is not real-time
- Linux with PREEMPT_RT is "soft" real-time
 - Must compile your own real-time kernel!
- This is difficult to do as a newcomer

² More info: https://shuhaowu.com/blog/2022/01-linux-rt-appdev-part1.html

Raspberry Pi ROS + RT image

- Image preinstalled with custom-built Linux + PREEMPT_RT
 - https://github.com/ros-realtime/linux-real-time-kernel-builder
- RT configurations
 - CPU frequency, permissions, kernel options...
- Worst-case scheduling latency measured with validation benchmarks

cyclictest: detects worst-case hardware and scheduling latency

- cyclictest: detects worst-case hardware and scheduling latency
- Run cyclictest with CPU stress test for 2 hours
 - Without CPU stress, latency between RT and non-RT kernel is similar
 - CPU stress made the most impact on latency compared to other stress (network, disk, memory)

- cyclictest: detects worst-case hardware and scheduling latency
- Run cyclictest with CPU stress test for 2 hours 105
 - Without CPU stress, latency between RT and non-RT kernel is similar
 - CPU stress made the most impact on latency compared to other stress (network, disk, memory)
- Non-RT kernel latency is at least 700 μs
 - Not suitable for 1000 Hz control loop
- RT kernel latency is ~280 μs??

- Identified source of latency with ftrace to be multipathd
 - Is a RT process with priority of 99!
 - Interrupts cyclictest and introduces latency
 - A daemon used for configure multiple I/O paths for a single storage device
 - Not useful for the Raspberry Pi
- Latency with multipathd removed: ~130 μs
- multipathd present on all Ubuntu server images?

- Upgraded from Linux $5.4 \rightarrow 5.15$
- Scheduling latency: 130 μs → 50 μs
- Good baseline for a real-time OS image

Raspberry Pi + ROS 2 + real-time

- Ready for ROS2
- Ready for 1000 Hz real-time applications
- A nice platform for beginners and experts

Extendable image builder

- Generic build process with a few files
 - Download vendor image
 - Extract and mount
 - Copy files
 - Run scripts via chroot + qemu
- Image builder is scalable to different single board computers with different base OSes and different apps

```
Terminal
 starfruit:~/projects/ros-realtime-rpi4-imagel$ sudo ./ros-rt-img build jammy-rt jammy-rt-hu
[2022-08-20 15:55:59][DEBUG] Found profile /home/shuhao/projects/ros-realtime-rpi4-image/ima
ge builder/data/jammy-rt
[2022-08-20 15:55:59][DEBUG] Found profile /home/shuhao/projects/ros-realtime-rpi4-image/ima
ge builder/data/jammy-rt-humble
[2022-08-20 15:55:59][INFO] Build information
[2022-08-20 15:55:59][INFO] ===========
[2022-08-20 15:55:59][INFO]
[2022-08-20 15:55:59][INF0] Build variables
[2022-08-20 15:55:59][INFO] ------
[2022-08-20 15:55:59][INFO] image_url = https://cdimage.ubuntu.com/ubuntu/releases/22.04/re
ease/ubuntu-22.04.1-preinstalled-server-arm64+raspi.img.xz
[2022-08-20 15:55:59][INFO] output_filename = ubuntu-22.04.1-rt-ros2-arm64+raspi.img
[2022-08-20 15:55:59][INFO] qemu_user_static_path = /usr/bin/qemu-aarch64-static
[2022-08-20 15:55:59][INFO]
[2022-08-20 15:55:59][INFO] Environment variables
[2022-08-20 15:55:59][INFO]
[2022-08-20 15:55:59][INFO] CACHE DIR = /home/shuhao/projects/ros-realtime-rpi4-image/cache
[2022-08-20 15:55:59][INFO] OUT DIR = /home/shuhao/projects/ros-realtime-rpi4-image/out
[2022-08-20 15:55:59][INFO] CHROOT PATH = /tmp/rpi4-image-build
[2022-08-20 15:55:59][INFO] LINUX RT VERSION = 5.15.39-rt42
[2022-08-20 15:55:59][INFO] STOCK LINUX VERSION = 5.15.0-1005
[2022-08-20 15:55:59][INFO] PINNED CPU FREQUENCY = 1500000
[2022-08-20 15:55:59][INFO] ROS DISTRO = humble
[2022-08-20 15:55:59][INFO]
[2022-08-20 15:55:59][INFO] Custom scripts
[2022-08-20 15:55:59][INFO] -------
[2022-08-20 15:55:59][INFO] phase1 host: /home/shuhao/projects/ros-realtime-rpi4-image/ima
```

DYNAMICS

Advanced image builder features

- Layer your application on top of the ROS 2 + RT image
 - Example: Standard real-time benchmark image
 - Example: Real-time Raspberry Pi CI image
- Cross-compilation
- Extensive documentation

your-application

jammy-rt-humble

jammy-rt

Summary

- A downloadable ROS + RT image for the Raspberry Pi
 - Validated real-time performance
 - Useful for getting started
- An extendable image builder for deployment
 - Useful for reproducible builds
- Star us on Github: https://github.com/ros-realtime/ros-realtime-rpi4-image
- Special thanks to the ROS real-time working group
 - Andrei Kholodnyi, Carlos San Vicente, Christophe Bedard, Lander Usategui

