A case study in optics manufacturing with Movelt 2 and ros2_control

20 October 2022, ROSCon 2022

Stephanie EngPickNik Robotics
stephanie.eng@picknik.ai

Joshua Beck Optimax SI jbeck@optimaxsi.com

Andy Zelenak
PickNik Robotics
zelenak@picknik.ai

Outline

- 1. Introduction
- 2. Problem statement
- 3. Release of abb_ros2: a ROS2 driver for ABB robot arms
- 4. Trajectory smoothing with Ruckig

Who we are

Stephanie Eng PickNik

Joshua Beck Optimax

Andy Zelenak PickNik

Introduction: PickNik

- PickNik helps companies with the development of advanced robotic applications
- PickNik collaborates with the open source robotics movement and
- Is the lead developer of Movelt

Application

- Optimax + PickNik collaboration: integrate ROS2 manufacture of freeform optics
- Freeform optics: optics that are not rotationally symmetric
- Manufacturing process
 - Machine rough shape of optic using bound abrasive tooling on a 5-axis mill
 - Iterative polish-measure loop with ABB industrial arm and freeform metrology tools
 - Final smoothing performed on a UR or ABB robot
 - Reduce mid-spatial frequency errors induced during generation and polishing

Existing ROS 1 Architecture

Existing ROS 1 Architecture

New ROS 2 Architecture

New ROS 2 Architecture

- Fork of the ROS1 driver had jerky motion and severe latency
- Desire to move to ROS2 for better long term support and use of ros2_controllers

abb_ros2

- Optimax and PickNik have collaborated to develop a ros2_control driver for ABB arms
- Open source, supports the IRB 1200 5/0.9

https://github.com/PickNikRobotics/abb_ros2

Code interfacing with Hardware

- Started from a proof-of-concept ros2_control driver
- Initial driver used ros2_control to read and write commands to and from the robot's externally guided motion (EGM) interface
- Started off by testing with RobotStudio
 - O Used this to ensure we had the proper network setup and proper RAPID program
- Added communication to Robot Web Services (RWS)

Code interfacing with ROS

- motion_data
- Functions a ros2_control driver should implement:
 - o on_init
 - export_state_interfaces export_command_interfaces
 - on_activate
 - o read
 - o write

Productizing the project

- Created abb_bringup to hold launchfiles and configurations
 - o abb_control.launch.py
 - o abb_moveit.launch.py
- Added CI
- Improved documentation

stephanie-eng Fix typo in docs (#41)		✓ d1c3a5b 6 days ago ⑤ History
**		
images	Documentation reorganization (#10)	5 months ago
NetworkingConfiguration.md	Add CI (#18)	5 months ago
□ README.md	Fix typo in docs (#41)	6 days ago
RWSQuickStart.md	Add RWS Client (#14)	2 months ago
☐ RobotStudioSetup.md	Add CI (#18)	5 months ago
Troubleshooting.md	Add CI (#18)	5 months ago

New driver functionality

- Spoof ros2_control drivers for simulation in ROS
- Communicate with ABB RobotStudio or directly with an ABB robot
- Support for external axes using MultiMove
- RWS integration for StateMachine and IO manipulation
- Some robot models already supported, more to come

New driver functionality

Toolpath Issues

- Lack of trajectory processing on input toolpath: jerky motion
- Input toolpaths of up to 500 000 waypoints caused latency

Ruckig

- Trajectory generator that respects jerk limits
 - Jerk is the derivative of acceleration
 - O High jerk is hard on the actuators and can cause robot protective stops

 Ruckig generates a trajectory with respect to (velocity/acceleration/jerk) limits, lengthening the trajectory in time as required

Ruckig Pipeline

Optimax Application

Movelt Usage

- Ruckig is easy to use with the OMPL motion planning pipeline of Movelt
- In other words, the default motion planning that almost everybody uses
- Add this to the beginning of your ompl_planning.yaml (ROS2 Humble/Rolling)

```
request_adapters : >-
default_planner_request_adapters/AddRuckigTrajectorySmoothing
```


Hardware Testing

A 53% reduction in deviation!

Thank you for listening!

