
A practitioner’s guide to
ros2_control

bence.magyar@five.ai

Bence Magyar
● Principal Software Engineer at FiveAI / Bosch UK

● ros_control and ros2_control maintainer
● PhD in Robotics from Heriot-Watt University, UK

History

pr2_controller_manager

(pr2_mechanism)

2009

ros_control

2012/2017

ros2_control

2017/2022

https://control.ros.org/master/doc/supported_robots/supported_robots.html

https://control.ros.org/master/doc/supported_robots/supported_robots.html

ros2_control no ros2_control

● Reuse hardware drivers
● Free controllers!
● Free simulator integration
● MoveIt2, rviz, Nav2
● Manage your hardware access like a pro
● Cheat: things you’ve never thought about

● I have controllers on an
embedded board already

● “I know control better than X” and
have controllers already written

● “I have just this one robot, why
bother with this complexity?”

● “Hah! I already have ros_control”

● General, robot-agnostic framework
● Collection of official controllers, defining de-facto

standard ROS interfaces to 3rd party
● Off-the-shelf Gazebo integration
● Stability
● Supported joint interfaces: position, velocity, effort
● Code complexity high, templating and inheritance
● Controller lifecycle inspired by Orocos, custom
● Unclear semantics: everything is the RobotHW or

controller
● Opt-in Hardware Composition
● RobotHW and boilerplate code

● ✅
● ✅

● ✅
● New features!
● Supported joint interfaces: no limitations
● Code leaner, more modern C++
● Controller lifecycle via ROS2 LifecycleNode
● [System|Actuator|Sensor]Component, Controller

and Broadcaster
● Hardware Composition is first class citizen
● Default ros2_control_node
● Hardware lifecycle
● Synchronous but variable rate for controllers
● Chaining controllers
● Asynchronous controllers* & hardware*
● Hardware failure handling
● Emergency stop handling*

2

Hardware
components

● SystemComponent
● SensorComponent
● ActuatorComponent

Controllers
● joint_trajectory_controller
● diff_drive_controller
● forwarding controllers
● gripper_controllers

Broadcasters
● joint_state_broadcaster
● imu_broadcaster
● force_torque_broadcaster

chaining

controllersco
m

po
sit

io
n

lif
ec

yc
le

controller_

m
anager

ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_hardware_interfaces

command interfaces
 flange_gpios/digital_out_1 [available] [unclaimed]
 flange_gpios/digital_out_2 [available] [unclaimed]
 joint1/position [available] [claimed]
 joint1/velocity [available] [unclaimed]
 joint2/position [available] [claimed]
 joint2/velocity [available] [unclaimed]
state interfaces
 flange_gpios/digital_in_1
 flange_gpios/digital_in_2
 flange_gpios/digital_out_1
 flange_gpios/digital_out_2
 joint1/effort
 joint1/position
 joint1/velocity
 joint2/effort
 joint2/position
 joint2/velocity

ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_controllers

joint_state_broadcaster[joint_state_broadcaster/JointStateBroadcaster] active
forward_position_controller[forward_command_controller/ForwardCommandController] active
joint_trajectory_controller[joint_trajectory_controller/JointTrajectoryController] inactive

ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_controllers -v
…
forward_position_controller[forward_command_controller/ForwardCommandController] active
 claimed interfaces:
 joint1/position
 joint2/position
 required command interfaces:
 joint1/position
 joint2/position
 required state interfaces:
 chained to interfaces:
 exported reference interfaces:

…

URDF extension with
<ros2_control>-tag

URDF extension with
<ros2_control>-tag

Configuring standard controllers

This can end-up in convoluted and complex controllers…

Using controller-chaining…

Using controller-chaining…

CLI extra $ ros2 control view_controller_chains

What config files and where?

HW error handling

HW error handling

HW error handling

HW error handling

Emergency stops*

Emergency stops*

Emergency stops*

Emergency stops*

Let’s check an example

Real hardware Gazebo
simulation

Real hardware Mock

Contributing

https://github.com/ros-controls

https://github.com/ros-controls

References

● https://control.ros.org

● ros_control paper in the Journal of Open Source Software
● ros2_control presentations

○ https://control.ros.org/master/doc/resources/resources.html
● ros2_control resources

○ https://ros-controls.github.io/control.ros.org/
○ https://github.com/ros-controls/ros2_control
○ https://github.com/ros-controls/ros2_controllers
○ https://github.com/ros-controls/ros2_control_demos
○ https://github.com/ros-controls/roadmap/blob/master/documentation_resources.md

https://control.ros.org
https://joss.theoj.org/papers/10.21105/joss.00456
https://control.ros.org/master/doc/resources/resources.html
https://ros-controls.github.io/control.ros.org/
https://github.com/ros-controls/ros2_control
https://github.com/ros-controls/ros2_controllers
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/roadmap/blob/master/documentation_resources.md

Denis Štogl, Karsten Knese,
Victor Lopez, Jordan Palacios,
Tyler Weaver, Márk Szitanics,
Paul Gesel, Tony Najjar, Andy
Zelenak, Olivier Stasse, Sachin
Kumar, Noel Jiménez García,
Jaron Lundwall, Alejandro
Hernández Cordero, Colin
MacKenzie, Tim Clephas,
Lovro Ivanov, Jafar Abdi,
Michael Wiznitzer, Patrick
Roncagliolo, Bence Magyar
and many more!

Thank you!

