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ros2_control no ros2_control

● Reuse hardware drivers
● Free controllers!
● Free simulator integration
● MoveIt2, rviz, Nav2
● Manage your hardware access like a pro
● Cheat: things you’ve never thought about

● I have controllers on an 
embedded board already

● “I know control better than X” and 
have controllers already written

● “I have just this one robot, why 
bother with this complexity?”

● “Hah! I already have ros_control”



● General, robot-agnostic framework
● Collection of official controllers, defining de-facto 

standard ROS interfaces to 3rd party
● Off-the-shelf Gazebo integration
● Stability
● Supported joint interfaces: position, velocity, effort
● Code complexity high, templating and inheritance
● Controller lifecycle inspired by Orocos, custom
● Unclear semantics: everything is the RobotHW or 

controller
● Opt-in Hardware Composition
● RobotHW and boilerplate code

● ✅
● ✅

● ✅
● New features!
● Supported joint interfaces: no limitations
● Code leaner, more modern C++
● Controller lifecycle via ROS2 LifecycleNode
● [System|Actuator|Sensor]Component, Controller 

and Broadcaster
● Hardware Composition is first class citizen
● Default ros2_control_node
● Hardware lifecycle
● Synchronous but variable rate for controllers
● Chaining controllers
● Asynchronous controllers* & hardware*
● Hardware failure handling
● Emergency stop handling*
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Hardware 
components

● SystemComponent
● SensorComponent
● ActuatorComponent

Controllers
● joint_trajectory_controller
● diff_drive_controller
● forwarding controllers
● gripper_controllers

Broadcasters
● joint_state_broadcaster
● imu_broadcaster
● force_torque_broadcaster

chaining 
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ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_hardware_interfaces

command interfaces
       flange_gpios/digital_out_1 [available] [unclaimed]
       flange_gpios/digital_out_2 [available] [unclaimed]
       joint1/position [available] [claimed]
       joint1/velocity [available] [unclaimed]
       joint2/position [available] [claimed]
       joint2/velocity [available] [unclaimed]
state interfaces
       flange_gpios/digital_in_1
       flange_gpios/digital_in_2
       flange_gpios/digital_out_1
       flange_gpios/digital_out_2
       joint1/effort
       joint1/position
       joint1/velocity
       joint2/effort
       joint2/position
       joint2/velocity



ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_controllers

joint_state_broadcaster[joint_state_broadcaster/JointStateBroadcaster] active      
forward_position_controller[forward_command_controller/ForwardCommandController] active     
joint_trajectory_controller[joint_trajectory_controller/JointTrajectoryController] inactive



ros2_control CLI - Integrated with ROS2 CLI

$ ros2 control list_controllers -v
…
forward_position_controller[forward_command_controller/ForwardCommandController] active     
       claimed interfaces:
               joint1/position
               joint2/position
       required command interfaces:
               joint1/position
               joint2/position
       required state interfaces:
       chained to interfaces:
       exported reference interfaces:

…









URDF extension with 
<ros2_control>-tag



URDF extension with 
<ros2_control>-tag











Configuring standard controllers



This can end-up in convoluted and complex controllers…



Using controller-chaining…



Using controller-chaining…



CLI extra $ ros2 control view_controller_chains







What config files and where?







HW error handling



HW error handling



HW error handling



HW error handling



Emergency stops*



Emergency stops*



Emergency stops*



Emergency stops*







Let’s check an example



Real hardware Gazebo 
simulation



Real hardware Mock







Contributing

https://github.com/ros-controls

https://github.com/ros-controls
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