
An open architecture for Hardware Acceleration in ROS 2

Easily leverage hardware acceleration in a ROS-centric manner and build custom
compute architectures for robots, or robot cores.

1

Framework

2

Hardware
Acceleration
in Robotics
Perception

TOOLS

ASSEMBLY

INSPECTION

MATERIALS

SOLDERING

3

CPU
Refined workshops that can build pretty much
anything, each workshop is a core

Work sequentially, task after task
until finalizing

Multiple workers or, “threads”, on each CPU (though it
eventually fills the space)

WORKSHOP Modern CPUs have various cores

Acceleration Robotics:
Understanding robotics
computations in CPU

TOOLS

END SHIFT

MATERIALS START SHIFT

4

GPU
Many workers doing repetitive work

Expert, designs masterplan (hard to find, few)

Not power efficient

INDUSTRIAL WORKSHOP
GPUs have many industrial workshops

Acceleration Robotics:
Understanding robotics
computations in GPUs

EXPERT ARCHITECT 1

EXPERT ARCHITECT 2

RECONFIGURATION

5

Flexible and adaptable factory (software defined)

Expert-driven architectures

Low power, high performance

ADAPTABLE FACTORY

Acceleration Robotics:
Understanding robotics
computations in FPGAs

FPGA

6

ASIC
Fixed, fully automated factory

Specialized in one process

Very expensive to design and build

Best throughput at lowest power consumption

FIXED FACTORY

Acceleration Robotics:
Understanding robotics
computations in ASICs

7

ROS 2 Hardware Acceleration Working Group (HAWG)

The ROS 2 Hardware Acceleration Working Group drives the creation,
maintenance and testing of acceleration kernels on top of open standards for
optimized ROS 2 and Gazebo interactions over different compute substrates
(including FPGAs, GPUs and other accelerators).

π dataflow
ß accelerated

dataflow

t(π)
t(ß) << t(π)

1x 1x - 100x

https://github.com/ros-acceleration/community

6
ACCELERATOR

VENDORS
PARTICIPATING

350
REGISTERED

ATTENDEES
HAWG#11

https://github.com/ros-acceleration/community

8

ROBOTCORE Framework:
An open architecture for Hardware
Acceleration in ROS 2

Common ROS 2 API

Default ROS 2

CPU

Open Architecture for Hardware Acceleration in ROS 2

In
te

gr
at

ed
 Tr

ac
in

g
an

d
B

en
ch

m
ar

ki
ng

CPURobotics Application
in the form of a
computational graph

Option 1

Option 2

CPU FPGA

CPU FPGA

Option 3

CPU GPU

Option N

CPU GPU

… …

FPGA

Hardware Acceleration Framework for ROS
It helps build custom compute architectures
for robots through acceleration kernels, or
robot cores, that make robots faster, more
deterministic and power-efficient. Simply
put, it provides a development, build and
deployment experience for creating robot
hardware and hardware acceleration
kernels similar to the standard, non-
accelerated ROS development flow.

https://arxiv.org/pdf/2205.03929.pdf

9

ROBOTCORE Framework

Hardware Acceleration Framework for ROS. It helps build custom compute
architectures for robots, or robot cores, that make robots faster, more deterministic and
power-efficient. Simply put, it provides a development, build and deployment experience
for creating robot hardware and hardware accelerators similar to the standard, non-
accelerated ROS development flow.

π dataflow

ß accelerated
dataflow

t(π) t(ß) << t(π)

1x 1.5x - 100x
Framework

Public community-driven and open source
implementation available at https://

github.com/ros-acceleration

https://github.com/ros-acceleration
https://github.com/ros-acceleration

10

ROBOTCORE Framework:
Production-grade multi-platform ROS
support with Yocto (REP 2000 ➦)

Instead of relying on common
development-oriented Linux distros
(such as Ubuntu), our contributions to
Yocto allow to build a customized Linux
system for your use case with ROS,
providing unmatched granularity,
performance and security.

KR260 KV260 ZCU102 ZCU104 Jetson Nano Jetson Xavier NX Jetson AGX Xavier PolarFire Icicle

https://github.com/ros/meta-ros/pull/1003

11

From ROBOTCORE Framework to an open standard
ROS 2 Hardware Acceleration Architecture and
Conventions (REP 2008 ➦)

We are bringing the lessons learned
while developing ROBOTCORE
Framework into a REP that
describes the architectural pillars
and conventions required to
introduce hardware acceleration in
ROS 2 in a vendor-neutral, scalable
and technology-agnostic manner.

All while maintaining the common
ROS development flow.

APPLICATION

ROS 2

DDS

UDP/IP

ROBOTCORE Framework

AMD NVIDIA MICROCHIP (Other silicon architecture)

https://github.com/ros-infrastructure/rep/pull/324

12

Benchmarking is the act of running a
computer program with a known
workload to assess the program's
relative performance.

We adopt a grey-box and non-
functional benchmarking approach
for hardware acceleration with a low-
overhead tracing and benchmarking
framework, and select the Linux
Tracing Toolkit next generation (LTTng)
to implement it.

18

Methodology
for benchmarking
performance

Benchmarking is the act of running a computer program to assess its relative
UJWKTWRFSHJ��.S�YMJ�HTSYJ]Y�TK�MFWI\FWJ�FHHJQJWFYNTS��NYȣX�KZSIFRJSYFQ�YT�
assess the relative performance of an acceleration kernel versus its CPU scalar
HTRUZYNSL�GFXJQNSJ��8NRNQFWQ �̂�GJSHMRFWPNSL�MJQUX�HTRUFWNSL�FHHJQJWFYNTS�
PJWSJQX�FHWTXX�MFWI\FWJ�FHHJQJWFYNTS�YJHMSTQTL �̂XTQZYNTSX�J�L��FPGA_A vs
FPGA_B or FPGA_A vs GPU_A��JYH���FSI�FHWTXX�PJWSJQ�NRUQJRJSYFYNTSX�\NYMNS�
YMJ�XFRJ�MFWI\FWJ�FHHJQJWFYNTS�YJHMSTQTL �̂XTQZYNTS��

9MJWJȣWJ�INʄJWJSY�Y^UJX�TK�GJSHMRFWPNSL�FUUWTFHMJX��9MJ�KTQQT\NSL�INFLWFR�
depicts the most popular inspired by [5]:

Figure 1

Performance
benchmarking

approaches.
Functional

(top-left),
Non-functional

(top-right),
Black-Box

(bottom-left) and
Grey-box

(bottom-right).

+

+

+

+

+

+

+

+

Probe

Function

System under test

System under test System under test

System under test

Probe

latency
throuhput
memory
CPU

Probe
Probe
Probe
Probe

Probe

Probe

Probe

FUNCTIONAL

Probes

'1&(0̋ '4= ,7*>̋ '4=

Test App.
Application

343ʺ+:3(9.43&1

+ +

+
+
+
+

-
-
-
-

+

+

+

+

+

+

+

+

+

++

v v

+

+

+

+

v v v v

v
v
v
v

++++

++

v
v

v

++

++

���

From ROBOTCORE Framework to an open standard
Benchmarking performance in ROS 2 (REP 2014 ➦)

https://github.com/ros-infrastructure/rep/pull/364

13

Case Study: ROS 2 Perception graph

ROBOTCORE Perception is an optimized robotic perception
stack built with ROBOTCORE Framework that leverages
hardware acceleration to provide a speedup in your perception
computations. API-compatible with the ROS 2 perception stack,
ROBOTCORE Perception delivers high performance, real-time
and reliability to your robots' perception.

π
dataflow

t(π)

PERCEPTION
SUBGRAPH

ROBOTCORE
Framework ROBOTCORE

Perception

+
ß

accelerated
dataflow

t(ß) < t(π)

PERCEPTION
SUBGRAPH

→+→
µ

accelerated
dataflow

t(µ) << t(π)

ACCELERATED
PERCEPTION
SUBGRAPH

1x 5-100x

14

0

60

120

180

240

CPU + GPU CPU + FPGA

RO
S

2
pe

rc
ep

tio
n

pi
pe

lin
e

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

3.5x

ROS 2 perception pipeline (2 nodes) - kernel runtime latency (ms). Measured ROBOTCORE Perception pipeline runtime latency running on an AMD KV260 versus
NVIDIA Isaac ROS running in a Jetson Nano 2GB. Measurements present the kernel runtime in milliseconds (ms). Source code available at perception_2nodes.

ROS 2 Perception graph: 2 nodes perception pipeline
π

dataflow

t(π)

PERCEPTION
SUBGRAPH

ROBOTCORE

ROBOTCORE
Perception

+
→

+

µ
accelerated

dataflow

t(µ) << t(π)

ACCELERATED
PERCEPTION
SUBGRAPH

1x

3.5x

rectify

resize

rectify

resize

https://github.com/ros-acceleration/acceleration_examples/tree/main/graphs/perception/perception_2nodes

15

0

0,75

1,5

2,25

3

CPU + GPU CPU + FPGA

RO
S

2
pe

rc
ep

tio
n

pi
pe

lin
e

Pe
rfo

rm
an

ce
-p

er
-w

at
t (

H
z/

W
)

6x
ROS 2 perception pipeline (2 nodes) - Performance-per-watt (Hz/W). Measured ROBOTCORE running on an AMD KV260 versus NVIDIA Isaac ROS running in a Jetson Nano 2GB.
Measurements present a 2-Node (rectify and resize operations) pre-processing perception graph performance-per-watt (Hz/W). Source code available at perception_2nodes.

π
dataflow

t(π)

PERCEPTION
SUBGRAPH

ROBOTCORE

ROBOTCORE
Perception

+
→

+

µ
accelerated

dataflow

t(µ) << t(π)

ACCELERATED
PERCEPTION
SUBGRAPH

1x

6x

rectify

resize

rectify

resize

ROS 2 Perception graph: 2 nodes perception pipeline

https://github.com/ros-acceleration/acceleration_examples/tree/main/graphs/perception/perception_2nodes

16

Case Study: ROS 2 Perception Nodes

π
dataflow

t(π)

ROBOTCORE
Framework

+

ß
accelerated

dataflow

t(ß) << t(π)

1x 30x

Harris
Harris

ROBOTCORE
Perception

→+

17

0

40

80

120

160

CPU + GPU CPU + FPGA

H
ar

ris
 p

er
ce

pt
io

n
N

od
e

ke

rn
el

 ru
nt

im
e

la
te

nc
y

(m
s)

30.27x
Harris - kernel runtime latency (ms). Measured ROBOTCORE Perception running on an AMD KV260, NVIDIA Isaac ROS running in a Jetson Nano 2GB. Measurements
present the kernel runtime in milliseconds (ms) and discard ROS 2 message-passing infrastructure overhead and host-device (GPU or FPGA) data transfer overhead

π
dataflow

t(π)

ROBOTCORE

+

ß
accelerated

dataflow

t(ß) << t(π)

1x

30x

Harris

Harris

ROBOTCORE
Perception→

+

ROS 2 Perception Nodes: Harris perception Node

18

0

125

250

375

500

CPU + GPU CPU + FPGA

H
O

G
 p

er
ce

pt
io

n
N

od
e

ke

rn
el

 ru
nt

im
e

la
te

nc
y

(m
s)

509.5x
Histogram of Oriented Gradients (HOG) - kernel runtime latency (ms). Measured ROBOTCORE Perception running on an AMD KV260, NVIDIA Isaac ROS running in a Jetson Nano 2GB.
Measurements present the kernel runtime in milliseconds (ms) and discard ROS 2 message-passing infrastructure overhead and host-device (GPU or FPGA) data transfer overhead

π
dataflow

t(π)

ROBOTCORE

+

ß
accelerated

dataflow

t(ß) << t(π)

1x

509x

HOG

HOG

ROBOTCORE
Perception→

+

ROS 2 Perception Nodes: HOG perception Node

19

2022
Hardware Acceleration
Report in Robotics

Captures the state-of-the art of
hardware acceleration in robotics by
following a quantitative approach and
presents robotic architects with a
resource to consider while designing
their robot computational architectures.

First phase, a community survey
conducted in both the ROS and
the overall robotics communities
helped grasp the interest behind
the use of hardware acceleration
in robotics. Input from this
community survey was then used
to drive the

Second phase, a hardware
acceleration benchmarking
effort

20

2022 Hardware Acceleration
Report in Robotics

First phase: We’re pushing forward REP-2008
initiative to better integrate hardware
acceleration with ROS and Gazebo,what’s most
important for you? (report➦)

96 answers

https://accelerationrobotics.com/pdf/hardware_acceleration_robotics_2022.pdf

21

26

A. Gazebo/Ignition physic engines
B.� 748���SF[NLFYNTS�XYFHP�SF[NLFYNTS��
C.� 748���RFSNUZQFYNTS�XYFHP�2T[J.Y��
D. ROS 2 perception stack
E.� 748���HTRRZSNHFYNTS�RNIIQJ\FWJ�))8��N�J��TʈTFINSL�NY�YT�MFWI\FWJ�
F.� 748���SJY\TWPNSL�XYFHP�:)5�.5�*YMJWSJY��RTWJ�IJYJWRNSNXYNH�SJY\TWP�NSYJWFHYNTSX�
G. ROS 2 control stack
H.� &QQ�TK�YMJR�FWJ�NRUTWYFSY���&HHJQJWFYNSL�,F_JGT�HTZQI�GJ�ZXJKZQ�\MJS�\TWPNSL�\NYM�

X^SYMJYNH�JS[NWTSRJSY�KTW�71�TW�)71��9MJ�TYMJW�FWJ�GTYM�KTW�YNRNSLX�FSI�IJYJWRNSNXYNH�
properties of the nodes

I. Webots physics engine
J.� .RFLJ�FSI�IJUYM�IFYF�UWTHJXXNSL�UNUJQNSJX��.RUWT[JRJSYX�TS�NRFLJ�FSI�IJUYM�IFYF�

HTRUWJXXNTS�FSI�YMJNW�NSYJLWFYNTS�\NYM�WTXGFL�WJHTWINSL�
K. Lidar drivers and perception
L. I’d like to see more general tools that can be implemented as nodes or library calls that

FQQT\�RJ�YT�VZNHPQ �̂GZNQI�FHHJQJWFYJI�FQYJWSFYN[JX�KTW�R �̂X^XYJR�

What packages/components
do you think we should prioritize
when it comes to hardware
accelerating ROS 2 and/or Gazebo?
96 answers (multiple answers allowed)

���

Figure 6

Results from the
“Hardware acce-
leration in ROS 2

and Gazebo survey”
(link) question:

“What packages/
components do

you think we should
prioritize when it

comes to hardware
accelerating ROS 2

and/or Gazebo?”.

29
 (3

0,
2%

)

20
 (2

0,
8%

)

19
 (1

9,
8%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

21
 (2

1,9
%)

62
 (6

4,
6%

)

39
 (4

0,
6%

)

58
 (6

0,
4%

)

0

20

40

60

80

A B C D E F G H I J K L

26

A. Gazebo/Ignition physic engines
B.� 748���SF[NLFYNTS�XYFHP�SF[NLFYNTS��
C.� 748���RFSNUZQFYNTS�XYFHP�2T[J.Y��
D. ROS 2 perception stack
E.� 748���HTRRZSNHFYNTS�RNIIQJ\FWJ�))8��N�J��TʈTFINSL�NY�YT�MFWI\FWJ�
F.� 748���SJY\TWPNSL�XYFHP�:)5�.5�*YMJWSJY��RTWJ�IJYJWRNSNXYNH�SJY\TWP�NSYJWFHYNTSX�
G. ROS 2 control stack
H.� &QQ�TK�YMJR�FWJ�NRUTWYFSY���&HHJQJWFYNSL�,F_JGT�HTZQI�GJ�ZXJKZQ�\MJS�\TWPNSL�\NYM�

X^SYMJYNH�JS[NWTSRJSY�KTW�71�TW�)71��9MJ�TYMJW�FWJ�GTYM�KTW�YNRNSLX�FSI�IJYJWRNSNXYNH�
properties of the nodes

I. Webots physics engine
J.� .RFLJ�FSI�IJUYM�IFYF�UWTHJXXNSL�UNUJQNSJX��.RUWT[JRJSYX�TS�NRFLJ�FSI�IJUYM�IFYF�

HTRUWJXXNTS�FSI�YMJNW�NSYJLWFYNTS�\NYM�WTXGFL�WJHTWINSL�
K. Lidar drivers and perception
L. I’d like to see more general tools that can be implemented as nodes or library calls that

FQQT\�RJ�YT�VZNHPQ �̂GZNQI�FHHJQJWFYJI�FQYJWSFYN[JX�KTW�R �̂X^XYJR�

What packages/components
do you think we should prioritize
when it comes to hardware
accelerating ROS 2 and/or Gazebo?
96 answers (multiple answers allowed)

���

Figure 6

Results from the
“Hardware acce-
leration in ROS 2

and Gazebo survey”
(link) question:

“What packages/
components do

you think we should
prioritize when it

comes to hardware
accelerating ROS 2

and/or Gazebo?”.

29
 (3

0,
2%

)

20
 (2

0,
8%

)

19
 (1

9,
8%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

21
 (2

1,9
%)

62
 (6

4,
6%

)

39
 (4

0,
6%

)

58
 (6

0,
4%

)

0

20

40

60

80

A B C D E F G H I J K L

96 answers (multiple answers allowed)

2022 Hardware Acceleration
Report in Robotics

First phase: What packages/components do you think weshould prioritize
when it comes to hardware accelerating ROS 2 and/or Gazebo? (report➦)

https://accelerationrobotics.com/pdf/hardware_acceleration_robotics_2022.pdf

30

What do you care more
about when it comes to
hardware acceleration?
94 answers

����

Figure 9

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “What

do you care more
about when it

comes to hardware
acceleration?”.

Speed (or latency):
time between

the start and the
completion of a

task

Real-time: Meeting
time deadlines in

their computations

Determinism: that
a task happens in
exactly the same
timeframe each

time

46,8%

48,9%

Speed (shorter
J]JHZYNTS�YNRJ�

Real-time and
determinism

Power consumption

22

First phase: What do you care more
about when it comes to hardware
acceleration? (report➦)

94 answers

2022 Hardware Acceleration
Report in Robotics

30

What do you care more
about when it comes to
hardware acceleration?
94 answers

����

Figure 9

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “What

do you care more
about when it

comes to hardware
acceleration?”.

Speed (or latency):
time between

the start and the
completion of a

task

Real-time: Meeting
time deadlines in

their computations

Determinism: that
a task happens in
exactly the same
timeframe each

time

46,8%

48,9%

Speed (shorter
J]JHZYNTS�YNRJ�

Real-time and
determinism

Power consumption

Speed
(shorter execution time
between the start and the
completion of a task)

Real-time
(ability of completing a task's
computations while meeting time
deadlines)

Power
(the electrical energy per unit of time
consumed while executing a given
task)

Bandwidth or
throughput
(the total amount of work done in a
given time for a task)

28 %

49 %

11 %

12 %

98 answers

https://accelerationrobotics.com/pdf/hardware_acceleration_robotics_2022.pdf

11

Hardware Acceleration
Report in Robotics

2022

11

Figure 0

Performance-per-
watt benchmark

of a simple ROS 2
perception graph

across various
accelerators. The

computational graph
studied is described

in section 4.2.
Bigger is better.

ROS 2 perception graph performance-per-watt with hardware acceleration (Hz/W)

2.5

2

1.5

1

0.5

0

CPU + FPGA (KR260) CPU + FPGA
(Jetson Nano)

CPU + GPU
(Jetson AGX Xavier)

Overall, results hint that the rate at which the energy
consumption grows with GPU solutions seems to be
smaller than the rate at which the latency performance
improves, which leads to a decaying performance-per-
watt in our ROS 2 perception measurements with these
,5:���(5:�XTQZYNTSX��.SXYJFI��+5,&�JSFGQJI�XTQZYNTSX�
UWJXJSY�F�UJWKTWRFSHJ�UJW�\FYY�ʅLZWJ�YMFYȣX��]�����]��
GJYYJW�YMFS�YMJ�TSJ�TGXJW[JI�NS�HTRUFWFGQJ�,5:���(5:�
XJYX�FSI��]�����]��GJYYJW�YMFS�YMJ�TSJ�NS�RTWJ�UT\JW�
,5:���(5:�XJYX�

9MJXJ�WJXZQYX�NSINHFYJ�YMFY�using bandwidth as the
only measure of performance can be misleading in
ROS and robotics��2TWJT[JW��IFYF�XZLLJXYX�YMFY�\MJS�
considering latency as the measure of performance, GPU
XJYX�RF �̂XYWZLLQJ�YT�ʅSI�YMJRXJQ[JX�TS�JVZFQ�KTTYNSL�
\NYM�YMJNW�+5,&�HTZSYJWUFWYX��

9MJWJ�FWJ�SJ[JWYMJQJXX�[FWNTZX�FI[FSYFLJX�YMFY�,5:X�
inherently have and that should be considered while
GZNQINSL�HTRUQJ]�WTGTYNH�HTRUZYFYNTSX��2TWJT[JW��
YMTZLM�+5,&�PJWSJQ�WZSYNRJ�J]JHZYNTS�TZYUJWKTWRX�YMJNW�
,5:�HTZSYJWUFWYX��NYȣX�WJQJ[FSY�YT�STYJ�YMFY�+5,&X�FWJ�
resource-limited and thereby it’s important to consider
YMFY�TSQ �̂F�ʅ]JI�XJY�TK�FHHJQJWFYTWX�\TZQI�GJ�FGQJ�YT�ʅY�
\NYMNS�FS�+5,&�FY�FS �̂LN[JS�UTNSY�NS�YNRJ�\MJWJFX�YMJ�
,5:X�ITSȣY�MF[J�YMNX�QNRNYFYNTS�IZJ�YT�YMJNW�FWHMNYJHYZWJX��
Scalable robot compute architectures that consider
hardware acceleration should look at combining CPUs,
,5:X�FSI�+5,&X�YT�TGYFNS�YMJ�GJXY�YWFIJ�Tʅ��

π
dataflow

t(π)

PERCEPTION
SUBGRAPH

ROBOTCORE

ROBOTCORE
Perception

+
→

+

µ
accelerated

dataflow

t(µ) << t(π)

ACCELERATED
PERCEPTION
SUBGRAPH

rectify

resize

rectify

resize

2022 Hardware Acceleration
Report in Robotics

Second phase: Benchmarking hardware acceleration (report➦)

https://accelerationrobotics.com/pdf/hardware_acceleration_robotics_2022.pdf

24

ROBOTCORE tools and robot cores

ROS 2 API compatible hardware acceleration tools and
robot Intellectual Property (IP) cores. Increasing your
robot's performance, including latency, power efficiency
and platform scalability.

ROBOTCORE®
Framework

Hardware acceleration

framework for
ROS and ROS 2.

ROBOTCORE®
Perception

Accelerated ROS 2

perception
stack.

ROBOTCORE®
Transform

Accelerated

ROS 2 coordinate
transformations (tf2).

ROBOTCORE®
Cloud

Speed-up ROS 2

graphs with/in
the cloud.

ROBOTCORE®

Accelerated
ROS 2 ****:

FogROS2 and ROBOTCORE Cloud: Tools to speed-up ROS 2 graphs with the cloud, and in the cloud.

π
dataflow

t(π)

COMPUTATIONALLY
EXPENSIVE
SUBGRAPH

ROBOTCORE
Framework ROBOTCORE

Cloud
ROBOTCORE

Perception

+
ß

accelerated
dataflow

t(ß) << t(π)

COMPUTATIONALLY
EXPENSIVE
SUBGRAPH

→+→
µ

accelerated
dataflow

t(µ) << t(π)

COMPUTATIONALLY
EXPENSIVE SUBGRAPH

+ →
1x 1.5x 10x 1000x

∂
accelerated

dataflow

t(∂) << t(π)

COMPUTATIONALLY
EXPENSIVE SUBGRAPH

https://github.com/BerkeleyAutomation/FogROS2

https://github.com/BerkeleyAutomation/FogROS2/

100 Mbps

1x Ethernet

4x PWM

Best-effort and reliable
QoS policies available

512 KB
SRAM memory

energy
efficient

Silicon-proven
Nodes from 130 nm to 22nm

32-bit
RISC-V ISA

1-core
in-order, 4

pipeline-stage

OMG DDS
and RTPS

interoperability

DDS v1.4 and RTPS 2.3

mW
budget applications

Robotics MCU: A robotics microcontroller unit (MCU) powered by RISC-V and ROS 2

Robotics
MCU

2xUART, 2xI2C master, 1xI2C slave,
2xQSPI master, 1xSDIO

More peripherals

Apache 2.0
and MIT

Commercially-friendly license

ROS 2
Target: Iron Irwini (May ’23)

27

28

ROBOTCORE:
The Robotic Processing Unit specialized in ROS
computations ➦
ROBOTCORE® is a robot-specific processing unit that helps map
Robot Operating System (ROS) computational graphs to its CPUs,
GPU and FPGA efficiently to obtain best performance. It empowers
robots with the ability to react faster, consume less power, and
deliver additional real-time capabilities.

https://github.com/ros-acceleration/robotic_processing_unit

https://accelerationrobotics.com/robotcore.php
https://github.com/ros-acceleration/robotic_processing_unit

29

Thanks
Q&A

