
Ⓡ

The vehicle OS company.

© 2022 Apex.AI, Inc.

Ⓡ

The vehicle OS company.

Bazel and ROS 2 –
Building Large Scale Safety Applications

Kilian Funk, Karl Wallner

October 19-21, 2022
at ROSCon ‘22

© 2022 Apex.AI, Inc.

© 2022 Apex.AI, Inc.

Large scale safety applications. How hard can it be?

Function and Performance in a distributed
system

● Efficient communication for large data
● Realtime requirements

Fail-Safe or Fail-Operational Behavior

● Error-detection
● Redundancy
● Special Hardware (e.g. lock step)
● Architectural measures

Well defined Process

● Compliance to State of the Art (e.g. V-Model,
ISO 26262)

● Safety Case (HARA, FMEA, FuSaCo, TeSaCo)
● Verification and Validation
● Standardized code creation (four eyes, etc.)
● CI/CD for a large team of developers

● Traceability

● Reproducibility

© 2022 Apex.AI, Inc.

Traceability & reproducibility

3

Source code

Deployable
Software

Vehicle level
requirements

Mechanics Mechanics

implementation

Cross

domain

Validate

ValidateVehicle definition
and requirements
Analysis

Requirements analysis
Design system
architecture

E/E E/E

H
ardw

are

Softw
are

So
ftw

ar
e

H
ar

dw
ar

e

Vehicle test
and integration

SPEC
IFIC

ATIO
N

IN
TE

G
R

AT
IO

N

System test
and integration

VerifySubsystem level
logical

System level
functions

Component level
physical

Application in
the field

The safety case relies on our ability to
prove transparently:

● why our application behaves like it
does

● what exactly we have developed and
deployed into the field

Arrows show dependencies that shall be traceable.
• Along the V for artifact creation
• Right to left for verification and validation

© 2022 Apex.AI, Inc.

Traceability & reproducibility

4

Source code

Deployable
Software

Vehicle level
requirements

Mechanics Mechanics

implementation

Cross

domain

Validate

ValidateVehicle definition
and requirements
Analysis

Requirements analysis
Design system
architecture

E/E E/E

H
ardw

are

Softw
are

So
ftw

ar
e

H
ar

dw
ar

e

Vehicle test
and integration

SPEC
IFIC

ATIO
N

IN
TE

G
R

AT
IO

N

System test
and integration

VerifySubsystem level
logical

System level
functions

Component level
physical

Application in
the field

The safety case relies on our ability to
prove transparently:

● why our application behaves like it
does

● what exactly we have developed and
deployed into the field

Build System

Arrows show dependencies that shall be traceable.
• Along the V for artifact creation
• Right to left for verification and validation

© 2022 Apex.AI, Inc.

Comparing Colcon/CMake vs. Bazel

5

Bazel

Declarative, abstract definition of build

Full programming language (starlark) for
extension/customization

Multi language support

Integrated (reliable, artifact based) local and remote
caching

(Almost) Hermetic build in sandboxes

Explicit (full) dependency tree

Colcon/CMake

Imperative macro language, different (redundant)
definitions

Various different build tools
(CMakeLists.txt, setuptools, Make)

C/C++ as (main) target language

Caching not safe, due to potentially missing
dependencies

Building in host environment

Compile time and runtime dependency discovery

Disclaimer: Biased towards use case of large scale safety applications!

© 2022 Apex.AI, Inc.

Things to consider when migrating to Bazel

6

Bazel

Strongly artifacts oriented; packages are mainly to
improve clarity for user

Workspace names must be unique.
Package and target names are absolute paths within
a workspace

Colcon/CMake

Artifacts are tightly organized in packages

Package names must be unique

package.xml

CMakeLists.txt

BUILD.bazel

cc_binary(
 name = “simple_publisher”,
 …
)

msg_library(
 name = “my_msgs”,
 …
)

ros_pkg(
 name = “my_cool_pkg”,
 executables_lib = [“simple_publisher”],
)

© 2022 Apex.AI, Inc.

Package deployment

Goal: Provide a means to “install/setup” bazel built ROS 2 packages (C++, Python for now) onto a target for
usage with ros2cli

Non-Goal: Provide a pre-built ROS 2 package that can be dependent on for building other ROS 2 packages

7

:some_executable

«cc_binary»

$ # Execute directly in your bazel workspace:
$ bazel run :some_executable

© 2022 Apex.AI, Inc.

Package deployment

Goal: Provide a means to “install/setup” bazel built ROS 2 packages (C++, Python for now) onto a target for
usage with ros2cli

Non-Goal: Provide a pre-built ROS 2 package that can be dependent on for building other ROS 2 packages

8

:my_cool_pkg

«ros_pkg»
:some_executable

«cc_binary»

:a_python_pkg

«py_wheel»

:some_other_ros_pkg

«ros_pkg»

→CcInfo

→PyInfo

→RosPkgInfo

→RosPkgInfo

:my_cool_pkg_archive

«ros_pkg_archive»

$ # Execute directly in your bazel workspace:
$ bazel run :some_executable

$ # Execute installed version:
$ bazel build :install_archive
$ bazel run :install_archive.install -- $INSTALL_PATH
$ source $INSTALL_PATH/setup.bash
$ ros2 run my_cool_pkg some_executable

© 2022 Apex.AI, Inc.

Message generation

9

xxx.BUILDxxx.BUILDxxx.BUILD*.idl/*.msg :std_msgs

«msg_library»

:some_custom_msgs*.idl/*.msg

«msg_library»

→MsgInfo

→MsgInfo

● msg_library rule only provides
information about the input

● no output artifact is generated

Goal: Provide an extensible multi-language concept for message code generation

© 2022 Apex.AI, Inc.

Message generation

10

xxx.BUILDxxx.BUILDxxx.BUILD*.idl/*.msg :std_msgs

«msg_library»

:some_custom_msgs*.idl/*.msg

«msg_library»

cc_A(:std_msgs)

cc_A(:some_msgs)

«cc_msg_library»

«cc_msg_library»

→MsgInfo

→MsgInfo

→CcInfo

→CcInfo

● msg_library rule only provides
information about the input

● no output artifact is generated

● cc_msg_library aspects are instantiated by the user of a
message on demand

● they generate the “linkable” library for the required language

Goal: Provide an extensible multi-language concept for message code generation

© 2022 Apex.AI, Inc.

Message generation

Goal: Provide an extensible multi-language concept for message code generation

11

*.idl

xxx.BUILDxxx.BUILDxxx.BUILD*.idl/*.msg :std_msgs

«msg_library»

:some_custom_msgs*.idl/*.msg

«msg_library»

cc_A(:std_msgs)

cc_A(:some_msgs)

«cc_msg_library»

py_A(:std_msgs)

«py_msg_library»

py_A(:some_msgs)

«py_msg_library»

«cc_msg_library»

→MsgInfo

→MsgInfo

→PyInfo

→PyInfo

→CcInfo

→CcInfo

● msg_library rule only provides
information about the input

● no output artifact is generated

● cc_msg_library and py_msg_library aspects are
instantiated by the user of a message on demand

● they generate the “linkable” library for the required language

© 2022 Apex.AI, Inc.

Repository setup

12

Goal: Keep as much of the federated repo concept as possible

• Bazel build configuration can be added on top of existing ROS 2
• A pinning mechanism is introduced to ensure reproducibility

ros2/ros2

«Github repository»

load

@ros2_config

«Github repository»

ApexAI/rules_ros

setup.bzl

«Bazel workspace»

ros2_config()

«Bazel workspace»

@ros2

ros2.repos ros2_.lock

xxx.BUILDxxx.BUILDxxx.BUILDxxx.BUILDxxx.BUILD

@ros2.rclcpp
«Bazel workspace»

BUILD.bazel

@ros2….

.

.

.copy of

BUILD.bazel

«Bazel workspace»

© 2022 Apex.AI, Inc.

Setup a workspace to use the ROS2-Bazel fork

WORKSPACE
workspace(name = “my_cool_workspace)

http_archive(
name = “ros2”,
url =

“https://github.com/ApexAI/rules_ros/…/rules_ros-x.x.tgz”
sha = “xxxxxx”,

)

load("@ros2//bazel/rules_repo:defs.bzl", "configure_ros2")
configure_ros2(distro = "humble")

load("@ros2_config//:setup1.bzl", "setup1")
setup1()

[...]

load("@ros2_config//:setup4.bzl", "setup4")
setup4()

● Install bazel/bazelisk on your host system

● Add the WORKSPACE file to an empty folder

● Add (.bazelrc, .bazelingore, .bazelversion) as
needed

● Create your own package within your workspace

13

© 2022 Apex.AI, Inc.

Summary

● Bazel is an alternative to the native ROS 2 build system Colcon/CMake

● Traceability from deployed software back to source code is achieved by a complete dependency tree

● Reproducibility can be achieved through a hermetic build

● We have shown how ROS 2 can be set up with bazel including core concepts like message generation and
package deployment

We are in the process of open sourcing the contents of this talk:

http://github.com/ApexAI/rules_ros

We are looking forward to your feedback on github.

14

http://github.com/ApexAI/rules_ros

