Apex

The vehicle OS company.

Bazel and ROS 2 -
Building Large Scale Safety Applications

Kilian Funk, Karl Wallner

October 19-21, 2022
at ROSCon 22

© 2022 Apex.Al, Inc.

Large scale safety applications. How hard can it be?

Function and Performance in a distributed Well defined Process
system
o« Compliance to State of the Art (e.g. V-Model,
o Efficient communication for large data 1ISO 26262)
o Realtime requirements o Safety Case (HARA, FMEA, FuSaCo, TeSaCo)

o \erification and Validation
o Standardized code creation (four eyes, etc.)

Fail-Safe or Fail-Operational Behavior o CI/CD for a large team of developers
e Error-detection Traceabillity
e Redundancy

o Special Hardware (e.g. lock step) Reproducibility
o Architectural measures

© 2022 Apex.Al, Inc.

Traceability & reproducibility

Vehicle definition Validate

| < Vehicle test C
Vehicle level and requirements and integration Application in
requirements Analysis the field

\ Requirements analysis Validate System test

System level aDriiiig’zgc?cﬁiem - and integration . -
functions The safety case relies on our abillity to
\ Mechanics Mechanics prove transparently:
E/E
Subsystem level Daployable e why our application behaves like it
logical Software d Oes

@
o
S
O
o
Z

e what exactly we have developed and
deployed into the field

Component level Source code
physical

domain

implementation

Arrows show dependencies that shall be traceable.
e Along the V for artifact creation
e Right to left for verification and validation

© 2022 Apex.Al, Inc.

Traceability & reproducibility

Vehicle definition Validate

_ < Vehicle test o
Vehicle level and requirements and integration Application in
requirements Analysis the field

\ Requirements analysis Validate System test

System level Design system - and integration
architecture . e
functions The safety case relies on our ability to
\ Mechanics Mechanics prove transparently'

E/E

Subsystem level
logical

e why our application behaves like it
does

e what exactly we have developed and
deployed into the field

Dzployable
Software

@
o
S
O
o
Z

Source code

Build System

implementation

Component level
physical

Arrows show dependencies that shall be traceable.
e Along the V for artifact creation
e Right to left for verification and validation

© 2022 Apex.Al, Inc.

Comparing Colcon/CMake vs. Bazel

Colcon/CMake)\ v Bazel

Imperative macro language, different (redundant) Declarative, abstract definition of build
definitions

Various different build tools
(CMakelLists.txt, setuptools, Make)

Full programming language (starlark) for
extension/customization
C/C++ as (main) target language Multi language support

Integrated (reliable, artifact based) local and remote
caching

Caching not safe, due to potentially missing
dependencies

Building in host environment (Almost) Hermetic build in sandboxes

17T 1010 0

Compile time and runtime dependency discovery Explicit (full) dependency tree

Disclaimer: Biased towards use case of large scale safety applications!

© 2022 Apex.Al, Inc.

Things to consider when migrating to Bazel

Colcon/CMake Bazel

Artifacts are tightly organized in packages — Strongly artifacts oriented; packages are mainly to
improve clarity for user

Package names must be unique — Workspace names must be unique.

Package and target names are absolute paths within
a workspace

BUILD.bazel

cc binary(

FxK*agexnﬂp}\\\\\\N\\§-\N§\\\\\~\N~§\§~* name = “simple publisher”,
)

msg library (

. name = “my msgs”,
CMakelLists.txt
p)
ros pkg
name = “my cool pkg”,
executables lib = [“simple publisher”],

© 2022 Apex.Al, Inc.

Package deployment

Goal: Provide a means to “install/setup” bazel built ROS 2 packages (C++, Python for now) onto a target for
usage with ros2cli

Non-Goal: Provide a pre-built ROS 2 package that can be dependent on for building other ROS 2 packages

«CC_binary»

:some_executable

S # Execute directly in your bazel workspace:
$ bazel run :some executable

© 2022 Apex.Al, Inc.

Goal: Provide a means to “install/setup” bazel built ROS 2 packages (C++, Python for now) onto a target for

usage with ros2cli

Non-Goal: Provide a pre-built ROS 2 package that can be dependent on for building other ROS 2 packages

«CC_binary»

:some_executable

—Cclnfo

—

«py_wheel»

:a_python_pkg
—PylInfo

«ros_pkg»

:some_other_ros pkg
—RosPkglnfo

IS

Package deployment

«ros_pkg»

«ros_pkg_archive»

:my_cool_D- ﬂl_pkg_amhive

—RosPkglnfo \

0

vy O r n An

Execute directly in your bazel workspace:
bazel run :some executable

Execute installed version:

bazel build :install archive

bazel run :install archive.install -- SINSTALL PATH
source S$INSTALL PATH/setup.bash

ros2 run my cool pkg some executable

© 2022 Apex.Al, Inc.

Message generation

Goal: Provide an extensible multi-language concept for message code generation

e msg library rule only provides
information about the input
e no output artifact is generated

«msg_library»

*.idl/*_msg :Some_CUStOnD
—Msglnfo

«msg_library»

.idl/.msg :std msgs\
—>Msglnfo

© 2022 Apex.Al, Inc.

Message generation

Goal: Provide an extensible multi-language concept for message code generation

e msg library rule only provides e cc msg library aspects are instantiated by the user of a
information about the input message on demand
e no output artifact is generated e they generate the “linkable” library for the required language

«cC_msg_library»

cc_A(:some_D

«msg_library»
* * —)CCInfO
idl/*.msg :some_custom_msgs
—Msglnfo
«cc_msg_library» vy
«msg_library» cc_A(:std_m$
o —Cclnfo
idl/*.msg :std_msgs o
. 7 —Msginfo

B
l

© 2022 Apex.Al, Inc.

Message generation

Goal: Provide an extensible multi-language concept for message code generation

e msg library rule only provides
information about the input
e no output artifact is generated

«msg_library»
.idl/.msg :some_custom_msgs
—Msglnfo
«msg_library»
“.idl/*.msg :std_msgs
| /4 —>Msglnfo

B
l

11

® cc msg libraryandpy msg library aspects are
instantiated by the user of a message on demand
e they generate the “linkable” library for the required language

«CcC_msg_library»

cc_A(:Some_D « py_msg_library>>

—Cclnfo

\

py_A(:some_msgs)
—>Pylnfo

/

«CC_msg_library» y

cc_A(:Std_m$ «py_msg_library» y

—Cclnfo

SRS

\

py_A(:std_msgs)

[
|

—>Pylnfo

© 2022 Apex.Al, Inc.

Goal: Keep as much of the federated repo concept as possible

e Bazel build configuration can be added on top of existing ROS 2
e A pinning mechanism is introduced to ensure reproducibility

«Github repository»

load

«Github repository»

12

Repository setup

«Bazel workspace»

@ros2_config

setup.bzl

4

«Bazel workspace»

A 4

ros2_config()

«Bazel workspace»

f

@ros2

ros2.repos

y

o

4

ros2_.lock

4

xxx.BUILD

copy of

@ros2.rclcpp

7

BUILD.bazeIJ

«Bazel workspace»

@ros2....

/

BUILD.bazeIJ

© 2022 Apex.Al, Inc.

13

Setup a workspace to use the ROS2-Bazel fork

Install bazel/bazelisk on your host system
Add the WORKSPACE file to an empty folder

Add (.bazelrc, .bazelingore, .bazelversion) as
needed

Create your own package within your workspace

WORKSPACE
workspace (name = “my cool workspace)

http archive (

name = “ros2”,

url =
“https://github.com/ApexAI/rules ros/../rules ros-x.x.tgz”

sha = “"xxxxxx”,

)

load ("@ros2//bazel/rules repo:defs.bzl", "configure ros2")
configure ros2(distro = "humble")

load("@ros2 config//:setupl.bzl", "setupl")
setupl ()

[...]

load("@ros2 config//:setup4.bzl", "setup4d")
setup4 ()

© 2022 Apex.Al, Inc.

14

Summary

Bazel is an alternative to the native ROS 2 build system Colcon/CMake
Traceability from deployed software back to source code is achieved by a complete dependency tree
Reproducibility can be achieved through a hermetic build

We have shown how ROS 2 can be set up with bazel including core concepts like message generation and
package deployment

We are in the process of open sourcing the contents of this talk:

http://qithub.com/ApexAl/rules ros

We are looking forward to your feedback on github.

© 2022 Apex.Al, Inc.

http://github.com/ApexAI/rules_ros

