
Presentation Title
Presentation Subtitle

January 2022

Your Name | name@picknik.ai

BehaviorTree.CPP 4.0
New features and how they make your life easier

October 21st, 2022

Davide Faconti
Staff Engineer
davide.faconti@picknik.ai

About me

Davide Faconti, nice to meet you

Working at Picknik (but not on Behavior Trees)

Almost 20 years in robotics doing:

● Humanoid robots design

● Bipedal Dynamic Walking

● Low hardware drivers

● Navigation and Localization

● Perception

● Manipulation

● Task planning

● Tooling and monitoring

● System architectures

● Project Management

● Product development

● But….

About me

Davide Faconti, nice to meet you

Working at Picknik (but not on Behavior Trees)

Almost 20 years in robotics doing:

● Humanoid robots design

● Bipedal Dynamic Walking

● Low hardware drivers

● Navigation and Localization

● Perception

● Manipulation

● Task planning

● Tooling and monitoring

● System architectures

● Project Management

● Product development

● But….

What to expect in the next 20 minutes

Apparently
random slides

Simplistic introduction
to BT.CPP

Finally presenting
BT.CPP 4.0

Me, showing pie-charts

I am not going to explain what Behavior Trees are

What makes software “good” and why do we want that?

03

Good software is always about “getting things
done”, but considering the human first

Writing software that a computer can interpret and
run makes the software “correct”, but not “good”.

The bottleneck to scale up a software system is
usually the ability of the human mind to manage
complexity.

This is the reason why a good software is one that
decreases the perceived complexity.

01

02

Plato Aristotle

How do you react to the concerns of your user?

“You are…” Or we can use empathy to
understand your user’s point of view

Option 1: Option 2:

● Easier to “read”
Graphical representation of FSMs rapidly become “spaghetti”.

● Intrinsically hierarchical
Similar to Hierarchical State Machines.

● Focus on actions, not states
We usually model our problem in terms of actions, not states.

● Extensibility of the “language”
Decorators and Control logic provide powerful abstractions

● But… they are not as intuitive for the user :(
People are very familiar with state machines, and mapping their
ideas into behavior tree could be challenging

Advantages of Behavior Trees

Advantages of Behavior Trees:

BehaviorTree.CPP

● Nodes are defined in C++, Trees in XML
The best of compiled and interpreted languages together

BehaviorTree.CPP

● Nodes are defined in C++, Trees in XML
The best of compiled and interpreted languages together

● Increasing popularity in the ROS community
Driven probably by the early adoption of Nav2

“Behavior Trees and State Machines in
Robotics Applications”

Razan Ghzouli, Swaib Dragule, Thorsten Berger,
Einar Broch Johnsen, Andrzej Wasowski

arXiv:2208.04211

BehaviorTree.CPP

● Nodes are defined in C++, Trees in XML
The best of compiled and interpreted languages together

● Increasing popularity in the ROS community
Driven probably by the early adoption of Nav2

● Technically decoupled from ROS
A double-edged sword: easy to include in any project, but not
idiomatic in the context of ROS.

BehaviorTree.CPP

● Nodes are defined in C++, Trees in XML
The best of compiled and interpreted languages together

● Increasing popularity in the ROS community
Driven probably by the early adoption of Nav2

● Technically decoupled from ROS
A double-edged sword: easy to include in any project, but not
idiomatic in the context of ROS.

● Tooling and Graphic interfaces
Groot is a useful tool that provides editing and real-time
monitoring. MoveIt Studio integrates a BT editor, too.

Behavior Trees as extensible Domain Specific Language

The way Behavior Trees provide high level of abstraction
goes beyond hierarchical compositions:

● You can create complex behaviors by composition of
Nodes and SubTrees

● But you can also “extend the language”, creating your
own custom Decorators and Controllers.

In electronics, the NAND gate is the building block that you can use to build the
others.
Similarly, the most atomic concept of FSM is the state transition.

Sometimes, it takes too much time to map your
mental model of the problem into a tree!!

Because we still think in terms of “states”

Current problems with BT.CPP

(Do you remember what we said about “you are doing it wrong” and empathy?)

Let me rephrase…

Behavior Trees don’t want you to
think in terms of states.

What if that is our weakness?

BehaviorTree.CPP 4.0

Introducing…

Goals of version 4.0

01 Reduce the cognitive effort of both the
person designing the tree or reviewing it.

02 Translate more effectively the “mental
model” of the designer into a tree.

03 Add more expressivity to the XML code
and the GUI representation.

04 In short: enhanced productivity

A scripting language inside BTs

We can now add simple piece of code (“one liners”) to express equality, assignment, comparison,
arithmetic operations and if-then-else. Our variables are the elements of the blackboard.

Examples:

● param_A = 5.0 ; pa r a m_B = ‘ he l l o’ ; e r r or _c ode = 42

● (pa r a m_A ! = pa r a m_B) && (e r r or _c ode == 0)

● s pe e d = (ma x_s pe e d / 2) + 4

● t a r ge t = (vol t a ge < 10) ? ‘ r e c ha r ge _pos e ’ : ‘ l oa d_pos e ’

Assignment

Logic operators

Arithmetic

If-then-else clauses

Example: Initializing blackboard variables

Before After
(multiple commands using semicolons)

Example: the Precondition Decorator

Before After
(not just equality)

States can make your BT layout simpler

This solves the most common limitation of BTs: sometimes you DO want
to think in terms of states and you need to return multiple results

● Now that we have unleashed the power of
scripts, we can go a step further, adding Pre
and Post conditions to every Node

● Shamelessly inspired by Unreal Engine BT

● It needs GUI support to become a game
changer (but you will have to wait).

● Implemented as optional XML attributes

Pre and Post conditions

Example

This is a Node (or an entire, complex SubTree) executed only if (voltage <= 15).

Blackboard variable state changed to string “landed” if the Node return
SUCCESS.

XML GUI

One more examples

Before After
(with enums!)

Here, instead of recovering locally to the FAILURE of MoveBase, I want to do the recovery
routine in another part of the tree. I use the port “results” to remember that.

Pre-conditions

● Optional Scripts executed before
the actual tick()

● Can be used to “skip” the execution
of a Node and its children.

● Being able to halt a RUNNING
Node, it is technically equivalent to
ReactiveSequence (but better?)

_skipIf Skip (don’t execute this node) if
condition is true

_f a i l ur e I f Skip and return FAILURE

_s uc c e s s I f Skip and return SUCCESS

_whi l e Don’t start, or halt a RUNNING
Node, if the condition becomes false

Post-conditions

● Optional Scripts executed after the
actual tick()

● Can be used to set variables (states,
error codes, etc.)

● In 3.X it was impossible to detect if an
action was halted. Now we can use
onHalted()

_onSuccess Script executed if Node returns
SUCCESS

_onFa i l ur e Script executed if Node returns
FAILURE

_onHa l t e d Script executed if a RUNNING
Node was halted

_pos t Script executed if Node returns
either SUCCESS or FAILURE

Documentation, tutorials and Migration guide

I hope you enjoy reading this as much as I hated writing it

What to expect next

● Currently in Alpha.
More stable releases by the end of the year.

● Feedback from the community
AKA, “you”. Try it, ask questions, give ideas.

● Editors supporting the new
features
MoveIt Studio and Groot 2.0

● Documentation and design
patterns
We need to create idiomatic use of BTs MoveIt Studio Developer Platform combines BehaviorTree.cpp with MoveIt

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	BehaviorTree.CPP
	BehaviorTree.CPP
	BehaviorTree.CPP
	BehaviorTree.CPP
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Example
	One more examples
	Pre-conditions
	Post-conditions
	Slide Number 27
	Slide Number 28

