BehaviorTree.CPP 4.0

New features and how they make your life easier

October 21st, 2022

Davide Faconti
Staff Engineer
davide.faconti@picknik.ai

5 About me

Davide Faconti, nice to meet you

Working at Picknik (but not on Behavior Trees)

Almost 20 years in robotics doing:

Humanoid robots design
Bipedal Dynamic Walking
Low hardware drivers
Navigation and Localization
Perception

Manipulation

oooooooo

Task planning

Tooling and monitoring
System architectures
Project Management
Product development

But....

[J
: About me |7 prcxnix

Davide Faconti™ &

Bll'l' Yllll MAY KNOW MEF FOR

. >

a-‘?’ LA

“ - 9
e Humanoi * o
I - nw*
e Bipedal L . ,.—’ “ nitoring

e Low hard

I t I ctures
e Navigatic 0 ugg er . sment

imgflip.com — N

| e

Working at Pic .

|

Almost 20 yea

e Perception e Product development

e Manipulation e But....

E What to expect in the next 20 minutes |7 o580

Me, showing pie-charts

l Apparently

/ random slides

Finally presenting
BT.CPP 4.0

N\

Simplistic introduction
to BT.CPP

| am not going to explain what Behavior Trees are

([]
* What makes software “good” and why do we want that?

Good software is always about “getting things
done”, but considering the human first

01 Writing software that a computer can interpret and
run makes the software “correct”, but not “good”.

The bottleneck to scale up a software system is
02 usually the ability of the human mind to manage
complexity.

O 3 This is the reason why a good software is one that
decreases the perceived complexity.

Plato

Aristotle

[J
* How do you react to the concerns of your user? 7 PICKNIK

Option 1: Option 2:
“You are...” Or we can use empathy to

understand your user’s point of view

'DOINGITWRONG

4} LoadObjectiveParameters
(_. IN config_file_name pick_object_config.ya:

Advantages of Behavior Trees B L

4} MoveGripperAction

gripper_command_action_name /robotig_gripper_controlle

position 0.0 4} InitializeMTCTask
. ——® IN ntroll /joint_trajectory cont
Advantages of Behavior Trees: T o e st
Q ((§ » - -
e Easier to “read ® SepMTCCureState
Graphical representation of FSMs rapidly become “spaghetti”. Wi E ic oiect tasky

e Intrinsically hierarchical @ SetupMTCPickObject
Similar to Hierarchical State Machines. Sequence

IN parameters {parameters}
pick_object_main

IN | grasp_pose {grasp_pose}
INOUT | task {pick_object_task}

® Focus on actions, not states
We usually model our problem in terms of actions, not states.

4§ PlanMTCTask
—@ IN) task {pick_object_task}
OUT | solution {pick_object_solution}

e Extensibility of the “language”
Decorators and Control logic provide powerful abstractions

. ope ¢ o, Fallback
e But... they are not as intuitive for the user :(# wait_for_spproval i user_avaiable
People are very familiar with state machines, and mapping their
ideas into behavior tree could be challenging \

IN | solution {pick_object_solution}

4} ExecuteMTCTask +

FLERATLE

BehaviorTree.CPP

<root main_tree_to_execute = "MainTree">

<BehaviorTree ID="DoorClosed">

e Nodes are defined in C++, Trees in XML THEA NaR Nane-denr slosed sequancets
<lnverter>
The best of compiled and interpreted languages together <IsDoorOpen/>

</Inverter>
<RetryUntilSuccessful num_attempts="4">
<0penDoor />
</RetryUntilSuccessful>
<PassThroughDoor />
</Sequence>
</BehaviorTree>

<BehaviorTree ID="MainTree">
<Fallback name="root_Fallback">
<Sequence name="door_open_sequence">
<IsDoorOpen/>
<PassThroughDoor />
</Sequence>
<SubTree ID="DoorClosed"/>
<PassThroughWindow/>
</Fallback>
</BehaviorTree>

</root>

FLERATLE

BehaviorTree.CPP

300 A = PyTrees ROS
——— PyTrees

200 = BehaviorTree.CPP
—— FlexBE

100 4 — sMAcH

® Nodes are defined in C++, Trees in XML

50

The best of compiled and interpreted languages together]

20 -

® Increasing popularity in the ROS community 10
5]

Driven probably by the early adoption of Nav2

Number of Active Projects

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 202]
Year

“Behavior Trees and State Machines in
Robotics Applications”

Razan Ghzouli, Swaib Dragule, Thorsten Berger,
Einar Broch Johnsen, Andrzej Wasowski

arXiv:2208.04211

FLERATLE

BehaviorTree.CPP

% BehaviorTree
® Nodes are defined in C++, Trees in XML
The best of compiled and interpreted languages together _ o _
() Overview [] Repositories 11 [Projects @ Packag
® Increasing popularity in the ROS community Pinned order updated
Driven probably by the early adoption of Nav2 A BehaviorTree.CPP Pubiic

Behavior Trees Library in C++. Batteries included.
@c++ Yri7k %435

e Technically decoupled from ROS

A double-edged sword: easy to include in any project, but not O BehaviorTreo.ROS (PiblG

idiomatic in the ConteXt Of ROS~ BehaviorTree.CPP utilities to work with ROS
@®c++ Yre9 Y39

] BehaviorTree.ROS2 ' Public
BehaviorTree.CPP utilities to work with ROS2
®c++ Yr12 ¥

PO

BehaviorTree.CPP

BehaviorTree.CPP

BehaviorTree.CPP Table of contents

o How to create a BehaviorTree o o
ActionNodes

Learn the basics >
Tutorials v Behavior Trees, similar to State Machines, are nothing more than a mechanism to invoke grr\e:;‘e: tree dynamically with
Summary callbacks at the right time under the right conditions.

Tutorial 1: Create a Tree

Y N o d eS a re d efi n ed i n C ++ , T rees i n X M L B Further, we will use the words "callback” and "tick" interchangeably.

Tutorial 3: Generic ports What happens inside these callbacks is up to you.

The beSt Of Compiled and interpreted Ianguages together Tutorial:Reactive Trees In this tutorial series, most of the time Actions will just print some information on console, but

Tutorial 5: Subtrees and T ! " °
Loggers keep in mind that real "production" code would probably do something more complicated.

Tutorial 6: Ports remappin . P
Pping Further, we will create this simple tree:
Tutorial 7: Load multiple XMLs

® Increasing popularity in the ROS community

Tutorial 9: Coroutines

Application Notes >

Driven probably by the early adoption of Nav2 (erosimmy) [orercns]

e Technically decoupled from ROS

A double-edged sword: easy to include in any project, but not
idiomatic in the context of ROS.

e Tooling and Graphic interfaces

Groot is a useful tool that provides editing and real-time
monitoring. Movelt Studio integrates a BT editor, too.

FLERATLE

Behavior Trees as extensible Domain Specific Language

In electronics, the NAND gate is the building block that you can use to build the
others.

Similarly, the most atomic concept of FSM is the state transition.

Universal Logic Gates using only NAND Gates

NAND Gate Symbol NOT Gate
+— (Inverter;
A%DD_OQ “"D—é(" The way Behavior Trees provide high level of abstraction
B 0— . . o e
o e goes beyond hierarchical compositions:

® You can create complex behaviors by composition of

Exclusive-OR
A OR Gate @D’@ Nodes and SubTrees
e But you can also “extend the language”, creating your
A A NOR Gate
A+B ATB
B
B

Exclusive-NOR

own custom Decorators and Controllers.

Current problems with BT.CPP

Sometimes, it takes too much time to map your

1 _' 7 mental model of the problem into a tree!!
i TR
(el Because we still think in terms of “states”

(Do you remember what we said about “you are doing it wrong” and empathy?)

Let me rephrase... @7

Behavior Trees don’t want you to
think in terms of states.

What if that is our weakness?

Introducing... |7 prenzs
BehaviorTree.CPP 4.0

E Goals of version 4.0

O 1 Reduce the cognitive effort of both the
person designing the tree or reviewing it.

02 Translate more effectively the “mental
model” of the designer into a tree.

03 Add more expressivity to the XML code
and the GUI representation.

04 In short: enhanced productivity

FLERATLE

A scripting language inside BTs

We can now add simple piece of code (“one liners”) to express equality, assignment, comparison,
arithmetic operations and if-then-else. Our variables are the elements of the blackboard.

Examples:
e param_A=50 ; param B = ‘hello’; error code = 42 Assignment
¢ (param A != param B) && (error_code == 0) Logic operators
e speed = (max _speed / 2) + 4 Arithmetic
e target = (voltage < 10) ? ‘recharge pose’ : ‘load pose’ If-then-else clauses

FLERATLE

Example: Initializing blackboard variables

Sequence

Script

A code="str_param="hello’;

SetBlackboard SetBlackboard SetBlackboard int_param=42;
float_param=3.14"

output_key="{str_param}"| |output_key="{int_param}"| |output key="{float_param}"
value="hello" value="42" value="3.14"

After

(multiple commands using semicolons)

Before

Example: the Precondition Decorator

BlackboardCheckint

value_A="{int_param}"
value_B="42"
return on_mismatch="FAILURE"

Precondition

if="int_param >= (40+2)"

else="FAILURE"

Y

MyAction

Before

Y

MyAction

After
(not just equality)

FLERATLE

[]
° States can make your BT layout simpler |7 prcxnix

—.—w
i HEARD YOU lII(E STATES

%I t}v

e} o) o o
A:ComplexSubtree IFCondition IFCondition IFCondition
[ouT] error_code [IN] else [IN] else [IN] else
[OUT] new_state ININI state=="do_landing' [IN] if [IN] if g

Solputstates lnsme Bellaumr Tree

- e imgflip.ec
A:Landing A:RecoverErrorA A:RecoverErrorB

This solves the most common limitation of BTs: sometimes you DO want
to think in terms of states and you need to return multiple results

E Pre and Post conditions

Now that we have unleashed the power of
scripts, we can go a step further, adding Pre
and Post conditions to every Node

Shamelessly inspired by Unreal Engine BT

It needs GUI support to become a game
changer (but you will have to wait).

Implemented as optional XML attributes

«. ROOT

FollowerBlackboard

|

“s, No Activation, No Deactivation, No Search Start

\

(J Blackboard

Blackboard: TargetToFollow is NotSet

« Reached move goal

{ inversed)
ReachedMoveGoal

(J Blackboard

Blackboard: TargetLocation is Set

I Sequence
Sequence

G EEEEE

e To 3 Wait
argetLocation Wait: 2.5

oW

= Move To
MoveTo: HomelLocation

Example

This is a Node (or an entire, complex SubTree) executed only if (voltage <= 15).

Blackboard variable state changed to string “landed” if the Node return
SUCCESS.

skiplf: voltage > 15

<EmergencylLanding :
EmergencyLandin
_skipIf = "voltage>15" gency g
_onSuccess = "state='landed'"/> onSuccess: state = 'landed'

XML GUI

FLERATLE

One more examples

FLERATLE

Here, instead of recovering locally to the FAILURE of MoveBase, | want to do the recovery
routine in another part of the tree. | use the port “results” to remember that.

Fallback

/\

Sequence

T

ForceFailure

A

MoveBase

goal={target}

SetBlackboard

output_key={result}
value=0

SetBlackboard

output_key={result}
value=-1

MoveBase

goal={target}

_onSuccess = "result=0K"

_onFailure = "result=ERROR"

Before

After

(with enums!)

FLERATLE

Pre-conditions

e Optional Scripts executed before _skiplf Skip (don’t execute this node) if
the actual tick() condition is true

e Can be used to “skip” the execution
of a Node and its children.

_failurelf | Skip and return FAILURE

° Being able to halt a RUNNING _succes sIf Sklp and return SUCCESS

Node, it is technically equivalent to
ReactiveSequence (but better?)

_while Don’t start, or halt a RUNNING
Node, if the condition becomes false

skiplf: voltage > 15

EmergencyLanding

onSuccess: state = 'landed’

FLERATLE

Post-conditions

e Optional Scripts executed after the _onSuccess Script executed if Node returns
actual tick() SUCCESS

® Canbe ‘:jsed to set variables (states, _onFailure Script executed if Node returns
error codes, etc.) FAILURE

e In 3.Xit was impossible to detect if an _ _
action was halted. Now we can use _onHalted Script executed if a RUNNING
onHalted() Node was halted

_post Script executed if Node returns

either SUCCESS or FAILURE

skiplf: voltage > 15

EmergencyLanding

onSuccess: state = 'landed’

=

Documentation, tutorials and Migration guide

BehaviorTree

Tutorial Editors Migration from 3X

BehaviorTree.CPP 4.0

The C++ library to build Behavior Trees,

Batteries included.

Tutorials

Think in terms of Actions,
not states

Unlike state machines, behavior trees
empathize executing actions, not.
transitioning between states.

\sDoorvOpen ‘

Build extensible and
hierarchical behaviors

Behavior Trees are composable. You can
build complex behaviors reusing simpler

ones.

40v Blog Github®t

&% BehaviorTree Editors

About
Learn the Basic Concepts v
Introduction to BTs
Main Concepts
The XML schema
Tutorial - Basics v
01. Your first Behavior Tree
02. Blackboard and ports
03. Ports with generic types
04, Reactive behaviors
05. Using SubTrees
06. Port Remapping
07. Use multiple XML files
08. Pass additional arguments
Tutorial - Advanced >
Nodes Library >
The power of C++,

the Flexibility of scripting

Implement your Actions in C++ and assemble
them into trees using a scripting lanquage
based on XML.

Migration from 3.X

L

Version: 40

About

About this library

This C++ library provides a framework to create BehaviorTrees. It is designed to be flexible, easy to use and fast.

Even if our main use-case is robotics, you can use this library to build Al for games, or to replace Finite State
Machines in you application.

BehaviorTree.CPP has many interesting features, when compared to other implementations:

It makes asynchronous Actions, i.e. non-blocking routines, a first-class citizen.
Trees are created at run-time, using am interpreted language (based on XML).

Itincludes a logging/profiling infrastructure that allows the user to visualize, record, replay and analyze state

transitions.

You can link staticaly your custom TreeNodes or convert them into plugins which are loaded at run-time.

What is a Behavior Tree?

A Behavior Tree (BT) is a way to structure the switching between different tasks in
robat or a virtual entity in a computer game.

| hope you enjoy reading this as much as | hated writing it

aov oo cenun ([T

What is a Behavior Tree?
Main Advantages of Behavior
Trees
"0k, but WHY do we need
BehaviorTrees (or FSM)?

oooooooo

What to expect next |7 presnrx

Currently in Alpha.

More stable releases by the end of the year.

Feedback from the community
AKA, “you”. Try it, ask questions, give ideas.

Editors supporting the new

features
Movelt Studio and Groot 2.0

Documentation and design r b r e s e s o A2 S N Move,t
patterns

We need to create idiomatic use of BTs Movelt Studio Developer Platform combines BehaviorTree.cpp with Movelt

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	BehaviorTree.CPP
	BehaviorTree.CPP
	BehaviorTree.CPP
	BehaviorTree.CPP
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Example
	One more examples
	Pre-conditions
	Post-conditions
	Slide Number 27
	Slide Number 28

