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Background | ROS 2 Features
● ROS 2 provides:

○ Pub/Sub communication
○ Callback scheduler

⇒ ROS 2 realizes loosely-coupled, highly interoperable systems

● Appropriate designing allow for a variety of systems.

(a) Many hosts (b) Single process

Example of implementation for parallel processing of nodes 2

Low overhead

Loosely coupled



● Response time is important for safety-critical systems, but difficult to measure.
● Cooperation of many nodes is important for system to behave as desired.

Background | Response Time
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∝ Response time



Use cases for Evaluation 
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Any issues?

What causes 
issues?

● Division of labor for performance evaluation and analysis.
○ Measure performance with simulation or field testing.
○ Analyze from multiple perspectives with various teams.



Introduction to CARET
● Our objective:

○ Evaluating response time
○ Involving various teams in tackling performance issues

even for a large-scale ROS 2 system like Autoware.

● To achieve these objectives,
we developed Chain-Aware ROS Evaluation Tool (CARET).

For example, CARET answers:

○ “Autoware response time was X ms.”
○ “QoS history of /cmd_vel topic was X.”
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https://github.com/tier4/CARET
Apache License 2.0



Features
● Lightweight

○ Add extra LTTng trace points via hook
○ Record only necessary information

● Flexibility
○ Provide Python-API for developers to analyze issues

● Intuitively evaluable visualization
○ Support several types of intuitive figures
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● CARET measures:
○ Callback latency
○ Communication latency
○ Node latency
○ Path latency

Measurement Targets

▷ 指標
○ 遅延
○ 実行時間

▷ 通信レイテンシ
○ レスポンスタイム
○ 周期・周波数

▷ エグゼキューター
○ スケジューリング

Major trace points and latency 7
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Visualization Concept

Check the performance 
of the whole system

Check the behavior in 
callback units

Identify potential problem 
nodes

CARET supports coarse to fine granularity visualization APIs.
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Any issues?

Were callbacks 
executed instantly?

Response time Callback scheduling

Fine

response time
● min: 100 ms
● ave: 150 ms
● max: 300 ms

Is QoS history depth 
appropriate?

GranularityCoarse

Message flow



Key Idea｜ Message flow

1. Developers define node path to evaluate.
2. CARET draws message dependencies between I/O nodes.
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2 Hz

However, latency in message flow is not suitable for response time evaluation.

1 Hz

“Which input message did the output message use?”

second

first



Key Idea｜ Response time

1. CARET uses each first flow that reflects input message.
2. CARET considers worst case as well.
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"When does the system respond to events?"

second

first



Diagrams and Figures
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Visualize Response Time
in Histogram

Visualize Message Flow

Figures by CARETDiagram



Evaluation steps:

1. Recording
2. Configuration 
3. Visualization

Evaluation Steps with CARET

Recording Configuration

Visualization
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Trace Data
Architecture 

File

Figure



Evaluation Steps｜Recording

Trace Data

Recording

launch target 
applications

15

● Generate trace data
○ Trace data is historical data and 

consists of information at trace points.
(timestamp, trace point’s type, message address, etc)

timestamp type args
0 callback_start …
1 publish …
2 callback_end …
… … …

Recording Configuration

Visualization

ros2 caret record
(command to record

information)



Evaluation Steps｜Configuration
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Configuration

Architecture 
File.yaml

● Create an “Architecture file” which defines followings
○ Target paths
○ Target application structure

Recording Configuration

Visualization

Architecture File
● Target path 

○ [node_name, topic_name, node_name, …]
● Executor Information

○ Type
● Node Information

○ Callbacks Information
○ Node Latency Definition



Evaluation Steps｜Visualization
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Trace Data

Architecture 
File

● Visualize the measurement results
○ CARET provides visualization APIs.
○ Developers can check the results with Jupyter-notebook.

Histogram

Message Flow

Callback Schedule

#!/usr/bin/env python3
from caret_analyze.plot import Plot
… # Processing trace data and architecture
Plot.create_path_histogram(target_path)

[ 1 ]:

Plot.create_message_flow(target_path)[ 2 ]:

Plot.create_callback_sched(target_path)[ 3 ]:

Visualization

Recording Configuration

Visualization



Sensors

Measurement of an Actual System
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Autoware
● An open source ROS based 

autonomous driving system

Target path : 
● From Sensing to Control
● Including major modules / 

nodes for autonomous 
driving Localization

Node

Sensing

Node

Perception

Node

Planning

Node

Control

Node

Autoware

Autonomous driving 
configuration diagram



Measurement Results of Autoware
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Target path Histogram Each module Histogram

・・・
Localization

ControlPlanning

Node 
Histogram

FineGranularityCoarse

Sensing → Localization → Planning → Control

Long Tail. Long Tail.

SensingLong Tail.



Future Work
Provide feedback on the perspectives of the autoware evaluation.

1. Expand measurement coverage
○ Path containing /tf topic
○ DDS layer
○ System call
○ Multiple host

2. Mitigate limits and constraints
○ Support complex nodes

3. Propose to integrate CARET trace points into each official package
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Discussion and comments are welcome !

This presentation  is based on results obtained from a project,
JPNP16007, subsidized by the New Energy and Industrial Technology Development Organization (NEDO). 

T. Kuboichi, A. Hasegawa, B. Peng, K. Miura, K. Funaoka, S. Kato and T. Azumi, “CARET: Chain-Aware ROS 2 
Evaluation Tool,” in Proc. of IEEE/ECU, Nov 2022 (in press)

https://github.com/tier4/CARET



Appendix
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Examples of Complex Nodes
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同じSubscribeで受信した
データから複数の時刻の
データを利用

特定の時刻のデータを利
用

Sub

Pub

time

// storage into buffer
sub_cb = [](&msg){
   queue.push(msg)
   msg_ = avg(queue);
  publish(msg_)
}

計測可能なケース
sub_cb = [](&msg){
   msg_ = func(msg);
  publish(msg_)
}

// ex. message filter
sub_cb = [](&msg){
  msg_ = lookup(msg.stamp);
  publish(msg_)
}

publish msg

receive
msg

Impossible to measure

Sub

Pub

Possible to measure
Sub

Pub

sub_cb = [](&msg){
   msg_ = func(msg);
  publish(msg_)
}

The node receiving data 
and publishing the data.

sub_cb = [](&msg){
   queue.push(msg)
   msg_ = avg(queue);
  publish(msg_)
}

The node receiving some 
data and publishing one 
data.

sub_cb = [](&msg){
  msg_ = lookup(msg.stamp);
  publish(msg_)
}

The node using the data at a 
specific time.

node latency
definication



Overhead
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Measurement Method
msg_->data = "Hello World";
start_time = now();
pub_->publish(msg_);
end_time = now();

exe_time = end_time - start_time;

additional 4~7 tracepoints



Output Figures with CARET
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FineCoarse

System 
Level

Callback 
Level

Scalable

Target 
Granularity

Visualization Granularity



Trace Points

Hooking with LD_PRELOADTracepoints added layers 26

● Add trace points to record information.
○ Time (e.g. callback start)
○ Implementation (e.g. node name)
○ Configuration (e.g. QoS)
○ Message identifier (address, message stamp)

※ Skip recording by hook if nodes or topics are unnecessary.



Definition of target paths
● Define a path to evaluate from a node graph.
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Candidate paths
1. A→D→E (target)
2. A→C→E
3. B→C→E

target path
● Search to select a path

○ search(A, E) # CARET API
Enumerate the paths to be written in 
one stroke from node A to node E.
returns:
■ [A,C,E]
■ [A,D,E]

● Define manually
○ It is possible to specify the path 

manually.



Scheduling Visualization
● Callback scheduling affects node latencies. 
● Scheduling visualization decompose node latencies

into callback latencies and scheduling latencies.
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