
Chain-Aware ROS Evaluation Tool (CARET)

Atsushi Hasegawa (Research Institute of Systems Planning, Inc.)

Keita Miura (EMB IV, Inc.)

This project is being conducted in cooperation with the University of Tokyo and TIER IV.

Background | ROS 2 Features
● ROS 2 provides:

○ Pub/Sub communication
○ Callback scheduler

⇒ ROS 2 realizes loosely-coupled, highly interoperable systems

● Appropriate designing allow for a variety of systems.

(a) Many hosts (b) Single process

Example of implementation for parallel processing of nodes 2

Low overhead

Loosely coupled

● Response time is important for safety-critical systems, but difficult to measure.
● Cooperation of many nodes is important for system to behave as desired.

Background | Response Time

3
∝ Response time

Use cases for Evaluation

4

Any issues?

What causes
issues?

● Division of labor for performance evaluation and analysis.
○ Measure performance with simulation or field testing.
○ Analyze from multiple perspectives with various teams.

Introduction to CARET
● Our objective:

○ Evaluating response time
○ Involving various teams in tackling performance issues

even for a large-scale ROS 2 system like Autoware.

● To achieve these objectives,
we developed Chain-Aware ROS Evaluation Tool (CARET).

For example, CARET answers:

○ “Autoware response time was X ms.”
○ “QoS history of /cmd_vel topic was X.”

5
https://github.com/tier4/CARET
Apache License 2.0

Features
● Lightweight

○ Add extra LTTng trace points via hook
○ Record only necessary information

● Flexibility
○ Provide Python-API for developers to analyze issues

● Intuitively evaluable visualization
○ Support several types of intuitive figures

6

● CARET measures:
○ Callback latency
○ Communication latency
○ Node latency
○ Path latency

Measurement Targets

▷ 指標
○ 遅延
○ 実行時間

▷ 通信レイテンシ
○ レスポンスタイム
○ 周期・周波数

▷ エグゼキューター
○ スケジューリング

Major trace points and latency 7

● CARET measures:
○ Callback latency
○ Communication latency
○ Node latency
○ Path latency

Measurement Targets

▷ 指標
○ 遅延
○ 実行時間

▷ 通信レイテンシ
○ レスポンスタイム
○ 周期・周波数

▷ エグゼキューター
○ スケジューリング

Major trace points and latency 8

● CARET measures:
○ Callback latency
○ Communication latency
○ Node latency
○ Path latency

Measurement Targets

▷ 指標
○ 遅延
○ 実行時間

▷ 通信レイテンシ
○ レスポンスタイム
○ 周期・周波数

▷ エグゼキューター
○ スケジューリング

Major trace points and latency 9

Visualization Concept

Check the performance
of the whole system

Check the behavior in
callback units

Identify potential problem
nodes

CARET supports coarse to fine granularity visualization APIs.

10

Any issues?

Were callbacks
executed instantly?

Response time Callback scheduling

Fine

response time
● min: 100 ms
● ave: 150 ms
● max: 300 ms

Is QoS history depth
appropriate?

GranularityCoarse

Message flow

Key Idea｜ Message flow

1. Developers define node path to evaluate.
2. CARET draws message dependencies between I/O nodes.

11

2 Hz

However, latency in message flow is not suitable for response time evaluation.

1 Hz

“Which input message did the output message use?”

second

first

Key Idea｜ Response time

1. CARET uses each first flow that reflects input message.
2. CARET considers worst case as well.

12

"When does the system respond to events?"

second

first

Diagrams and Figures

13

Visualize Response Time
in Histogram

Visualize Message Flow

Figures by CARETDiagram

Evaluation steps:

1. Recording
2. Configuration
3. Visualization

Evaluation Steps with CARET

Recording Configuration

Visualization

14

Trace Data
Architecture

File

Figure

Evaluation Steps｜Recording

Trace Data

Recording

launch target
applications

15

● Generate trace data
○ Trace data is historical data and

consists of information at trace points.
(timestamp, trace point’s type, message address, etc)

timestamp type args
0 callback_start …
1 publish …
2 callback_end …
… … …

Recording Configuration

Visualization

ros2 caret record
(command to record

information)

Evaluation Steps｜Configuration

16

Configuration

Architecture
File.yaml

● Create an “Architecture file” which defines followings
○ Target paths
○ Target application structure

Recording Configuration

Visualization

Architecture File
● Target path

○ [node_name, topic_name, node_name, …]
● Executor Information

○ Type
● Node Information

○ Callbacks Information
○ Node Latency Definition

Evaluation Steps｜Visualization

17

Trace Data

Architecture
File

● Visualize the measurement results
○ CARET provides visualization APIs.
○ Developers can check the results with Jupyter-notebook.

Histogram

Message Flow

Callback Schedule

#!/usr/bin/env python3
from caret_analyze.plot import Plot
… # Processing trace data and architecture
Plot.create_path_histogram(target_path)

[1]:

Plot.create_message_flow(target_path)[2]:

Plot.create_callback_sched(target_path)[3]:

Visualization

Recording Configuration

Visualization

Sensors

Measurement of an Actual System

18

Autoware
● An open source ROS based

autonomous driving system

Target path :
● From Sensing to Control
● Including major modules /

nodes for autonomous
driving Localization

Node

Sensing

Node

Perception

Node

Planning

Node

Control

Node

Autoware

Autonomous driving
configuration diagram

Measurement Results of Autoware

19

Target path Histogram Each module Histogram

・・・
Localization

ControlPlanning

Node
Histogram

FineGranularityCoarse

Sensing → Localization → Planning → Control

Long Tail. Long Tail.

SensingLong Tail.

Future Work
Provide feedback on the perspectives of the autoware evaluation.

1. Expand measurement coverage
○ Path containing /tf topic
○ DDS layer
○ System call
○ Multiple host

2. Mitigate limits and constraints
○ Support complex nodes

3. Propose to integrate CARET trace points into each official package

20

21

Discussion and comments are welcome !

This presentation is based on results obtained from a project,
JPNP16007, subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

T. Kuboichi, A. Hasegawa, B. Peng, K. Miura, K. Funaoka, S. Kato and T. Azumi, “CARET: Chain-Aware ROS 2
Evaluation Tool,” in Proc. of IEEE/ECU, Nov 2022 (in press)

https://github.com/tier4/CARET

Appendix

22

Examples of Complex Nodes

23

同じSubscribeで受信した
データから複数の時刻の
データを利用

特定の時刻のデータを利
用

Sub

Pub

time

// storage into buffer
sub_cb = [](&msg){
 queue.push(msg)
 msg_ = avg(queue);
 publish(msg_)
}

計測可能なケース
sub_cb = [](&msg){
 msg_ = func(msg);
 publish(msg_)
}

// ex. message filter
sub_cb = [](&msg){
 msg_ = lookup(msg.stamp);
 publish(msg_)
}

publish msg

receive
msg

Impossible to measure

Sub

Pub

Possible to measure
Sub

Pub

sub_cb = [](&msg){
 msg_ = func(msg);
 publish(msg_)
}

The node receiving data
and publishing the data.

sub_cb = [](&msg){
 queue.push(msg)
 msg_ = avg(queue);
 publish(msg_)
}

The node receiving some
data and publishing one
data.

sub_cb = [](&msg){
 msg_ = lookup(msg.stamp);
 publish(msg_)
}

The node using the data at a
specific time.

node latency
definication

Overhead

24

Measurement Method
msg_->data = "Hello World";
start_time = now();
pub_->publish(msg_);
end_time = now();

exe_time = end_time - start_time;

additional 4~7 tracepoints

Output Figures with CARET

25

FineCoarse

System
Level

Callback
Level

Scalable

Target
Granularity

Visualization Granularity

Trace Points

Hooking with LD_PRELOADTracepoints added layers 26

● Add trace points to record information.
○ Time (e.g. callback start)
○ Implementation (e.g. node name)
○ Configuration (e.g. QoS)
○ Message identifier (address, message stamp)

※ Skip recording by hook if nodes or topics are unnecessary.

Definition of target paths
● Define a path to evaluate from a node graph.

27

Candidate paths
1. A→D→E (target)
2. A→C→E
3. B→C→E

target path
● Search to select a path

○ search(A, E) # CARET API
Enumerate the paths to be written in
one stroke from node A to node E.
returns:
■ [A,C,E]
■ [A,D,E]

● Define manually
○ It is possible to specify the path

manually.

Scheduling Visualization
● Callback scheduling affects node latencies.
● Scheduling visualization decompose node latencies

into callback latencies and scheduling latencies.

28

