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Conceptual Overview of REP-2011
New Features Needed in ROS 2

Dive into Run-Time Interface Reflection
Future Work and Known Issues
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Motivation for REP-2011

Reasons for this REP:

e It is natural for types to evolve over time
o In your projects
o And in ROS 2 ttself
e We need tools to detect when this happens
e We need tools to help transition between versions
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The Problem

In ROS 2 today:

e Ifyou try to change a type unevenly across your
system:
o Some middlewares may allow communication,
depending on the change
o Warnings/errors when types are mcompatible vary
o Limited features exposed in ROS 2 to help you
evolve types in a backward/forward way
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The Problem - Example

What if we want

# Temperature.msg :
: . to change this?
uint64 timestamp // ange this

int32 temperature
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The Problem - Example

What if we want

# Temperature.msg :
. . to change this?
uinté64 timestamp ///// 9

int32 temperature

Add a new, but
redundant, optional
field?

# Temperature.msg
uint64 timestamp
int32 temperature

optional float64 temperature_float

Just change
the type
directly?

# Temperature.msg
uint64 timestamp
float64 temperature

\ Note: you can’t actually do this right now.
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The Problem - Example

What if we want

# Temperature.msg :
. . to change this?
uinté64 timestamp ///// 9

int32 temperature

You can do either, if
the middleware
supports it.

# Temperature.msg
uint64 timestamp

int32 temperature

optional float64 temperature_float

We’ll focus on
this option, for
the REP.

# Temperature.msg
uint64 timestamp
float64 temperature

\ Note: you can’t actually do this right now.
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The Proposed Solution

o REP-2011:
o https://github.com/ros -infrastructure/rep/pull/358

e REP-2011 aims to help users:
o Know when messages have changed
o Convert between versions on demand
o Write code to convert between versions
e |t will do so by depending on the ability to:
o Interact with types using only their description
e This REP does not try to:
o Expose “advanced” serialization features like
optional fields, extensible types, or inheritance
o Prevent these “advanced” features from working
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What will this look like in practice?

% ros2 topic echo /scan sensor_msgs/msg/LaserScan

[WARN] [1666081526.522630000] [ros2 bag]: Publisher '[gid...]' on topic '/scan' 1is
using a version of 'sensor_msgs/msg/LaserScan' ('abc123') that does not match the
version used locally ('def456').

% ros2 interface transfer_functions info sensor_msgs/msg/LaserScan abc123 def456

Conversion available with transfer functions:
- [abc123 -> cba321]:
- pkg: sensor_msgs_migration
- description: new field added to describe ...
- [cba321 -> def456]:
- pkg: sensor_msgs_migration

- description: changed the type of field ...
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What will this look like in practice?

" ros2 bag ... ‘ ‘ ros2 topic echo ...

\ _I Publisher<LaserScan@abc123> }7 /scan —)| Subscription<LaserScan @ defd56= I_ /

ros2 topic echo ...
Sl m P o = g Y = 0T A F A B
subscription<Laserscan(@ defd 56

@abc123= Publisher<LaserScan@defd56= —_—

F

— = Transfer Funcs. abc123->def456

ros2 interface convert_topic_types ...
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What will this look like in practice?

% ros2 interface convert_topic_types \

--from /scan \
--to /updated/scan \

# --component-container <container name>

ros2 bag ... ‘ ros2 topic echo ...

_I Publisher<LaserScan@abc123> ‘ ‘ Subscription<LaserScan @ defd56= I_ _

| 1

feran 4)| Subscription<LaserScan@abc123> H Publisher<LaserScan @ defd4 56> If Jupdated/scan

—:--;j:f Transfer Funcs. abc123->def456 >—T

ros2 interface convert_topic_types ...

% ros2 topic echo /updated/scan sensor_msgs/msg/LaserScan
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What will this look like in practice?

e \Ways to set up conversions:
o as a stand-alone node
o as a hode component
o syntactic sugar in a launch file
e Benefits of this approach:
o keeps QoS and queuing in middleware
o easy to observe from tools (e.g. rqt_graph)
e Downsides of this approach:
o requires extra topics and hops through pub/sub
o requires transfer functions to exist
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Needed Underlying Technical Changes

e Run-Time Interface Reflection
o Interacting with types using only the
TypeDescription, i.e. reading, writing, sending, and
receiving
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Run-Time Interface Reflection
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The Context

Normally for ROS:
Message files — Compile-time Generated Code and Headers

e E.g. String.msg — std_msgs::msg::String
(std_msgs/msg/string.hpp)

But what if...

e You don’t have the message headers

e But you obtain the message description at runtime
o E.g. From a bagfile, published over a topic, etc.
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Run-time Interface Reflection

“At run -time, given a byte buffer and its description...
Can we access its members?”

6d 65 74 68 79 6¢ 44
726167 64 6e ... e

—>

Interface
Reflection

-

-

{fields’: [(O, ‘string’)]}r\

‘raw_byte ser”
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e

List fields
Get and set fields

Construct new message instances



Pub-Sub (At run-tmme)

Using interface reflection , and a message
description , dynamically create at run-time...

-

~

Message < Must be parsed
Description (Dynamic Type )
A\ | J
create— create ——create

v
[ Publishers } [Subscribers} [ Messages }
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Pub-Sub (At run-time)

Pub

1. Parse description to create a dynamic type
2. Use dynamic type to create dynamic data
3. Publish dynamic data

Sub

1. Receive dynamic data
2. Parse description to create a dynamic type
3. Use dynamic type to access dynamic data
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How will run-time mterface reflection be
implemented?
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Reflection for Different Technologies

For most technologies, we can just create a wrapper

‘ Technology ‘ Dynamic Type ‘ Dynamic Data ‘
FastRTPS (C++) DynamicType DynamicData
RTI Connext (C) DDS_TypeCode DDS_DynamicData
Protobuf (C++) FileDescriptorProto DynamicMessage

For middlewares that don’t have structured messages,
we can just piggyback off any serialization library (e.g. FastCDR)

The type description helps retain type mformation!
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Run-tme Interface Reflection Library

This functionality should be a standalone C library that can be used

separately from RMW.

The run-time interface reflection library should abstract away
serialization! (By piggybacking offa middleware or wrapping a serialization

lib!) e
Application Code i [ rmw / rcl ] [ roshag ] [ User Code
______________________________________ R Al
{ Interface Reflection LIBRARY
R N 1 [
: A 4 h 4
SSvyappap le I |, FastRTPS J ( Protobuf } [RTI ConnextJ o000
erialization :
"open This library should be able to support non-DDS, non-XTypes
robotics libs! (e.g. Protobuf/Zenoh)



Demo

We made a prototype to check for feasibility and refine the interfaces

& It WORKS with FastDDS pub-sub!! &

(And there’s a protobuf dynamic example too!!)

methylDragon/ros-type-
introspection-prototype

a1 ®o w0 g0 O

Contributor |ssues Stars Forks
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Future Work
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Future Work

e More prototypes (e.g. Connext)
e Create the interfaces to abstract away getters and
setters

e Type description distribution
e Plug it all into rcl/rmw!
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Known Issues

e Some bugs need to be fixed in middlewares
related to run-time interface reflection

e Some middlewares lack the necessary interfaces
right now

e Some conceptual discrepancies in the type
description message, e.g. bounded sequences of
bounded strings
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Questions

This presentation: https://bit.ly/3dFitlg
The REP PR: https://tinyurl.com/rep-2011-pr

E ]

Presentation Slides
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Appendix



Pub-Sub
Publisher w (Subscription\

Type Description Distribution

[ .msg / .idl ]—)[type description]— ————————————— )[type description}

[Dynamic Type 1 [Dynamic Type }
creates instance of reads
VL Middleware Jr

[Dynamic Data }- ------------- )[ Dynamic Data }
N Y . Y,
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Demo: It works! (FastDDS Pub-Sub)

L]
methyldragon@methyldragon-V

$ ros2 run evolving_seriali examples fastrips_evolving_pub I

Pub-sub Demo Code

(’Open . tinyurl.com/fastdds-ets-pubsub
robotics




Demo

We made a prototype to check for feasibility and refine the interfaces

& It with FastDDS pub-sub!! &

(And there’s a protobuf dynamic example too!!)

methylDragon/ros-type-
introspection-prototype

a1 ®o w0 T 0 0

Contributor Issues Stars Forks
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Demo: Type Description
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FastDDS Prototype: Type Description

The type description t struct allows us to
iterate through the fields and obtain
necessary information to construct the

type.
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FastDDS Prototype: ETS

The EvolvingTypeSupport (ETS)is a
C interface to be filled by any downstream
implementations!
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FastDDS Prototype: ETS

59 _type = ep a::fastrt JynamicType ptr(

With the type description t struct, we can
iterate through the fields and call the
necessary methods to create the type!
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Demo: It works! (FastDDS Pub)

You can use the same interface on the
subscription side!

This 1s grabbed at runtime!
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Demo: It also works for protobuf (no protoc)!

—= GENERATED PROTO == : :
syntax = "proto3"; In this case the DynamicType comes

from a runtime-generated .proto file!

ge ExampleMs¢

qrﬂtic_crr.y_fieldzz;
We use the DynamicMessage interfaces
from protobufto construct the message

e inner { from th ner pr fil nten
eated inner_inner doubly nested seq of msg field=1; 0 the gene e P oto file contents

message inner_inner {
float doubly_nested float32_field=1;
The demo repo includes the

proto file generator library! (protogen)

o oy oy B

n 2022

ay field: [true, false, true]

sg_field {
32_field: 0.1

4
doubly_nested_seq_of_msg_field {
i
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