Evolving Messages Over Time - REP-2011

William Woodall <willlam@openrobotics.org>
Brandon Ong <brandon@openrobotics.org>
You Liang Tan <tan_you_liang@hotmail.com>
Kyle Marcey <kyle.marcey@apex.ai>

October 2022

" ?opbeor]c icS

mailto:william@openrobotics.org
mailto:brandon@openrobotics.org
mailto:tan_you_liang@hotmail.com
mailto:kyle.marcey@apex.ai

Overview

Conceptual Overview of REP-2011
New Features Needed in ROS 2

Dive into Run-Time Interface Reflection
Future Work and Known Issues

" ?opbeont icS

REP-2011

" ?opbeor}c icS

Motivation for REP-2011

Reasons for this REP:

e It is natural for types to evolve over time
o In your projects
o And in ROS 2 ttself
e We need tools to detect when this happens
e We need tools to help transition between versions

" ?opbeont icS

The Problem

In ROS 2 today:

e Ifyou try to change a type unevenly across your
system:
o Some middlewares may allow communication,
depending on the change
o Warnings/errors when types are mcompatible vary
o Limited features exposed in ROS 2 to help you
evolve types in a backward/forward way

" ?opbeont icS

The Problem - Example

What if we want

Temperature.msg :
: . to change this?
uint64 timestamp // ange this

int32 temperature

(’ ?opbeor]t icS

The Problem - Example

What if we want

Temperature.msg :
. . to change this?
uinté64 timestamp ///// 9

int32 temperature

Add a new, but
redundant, optional
field?

Temperature.msg
uint64 timestamp
int32 temperature

optional float64 temperature_float

Just change
the type
directly?

Temperature.msg
uint64 timestamp
float64 temperature

\ Note: you can’t actually do this right now.

(’ ?opbeor]t icS

The Problem - Example

What if we want

Temperature.msg :
. . to change this?
uinté64 timestamp ///// 9

int32 temperature

You can do either, if
the middleware
supports it.

Temperature.msg
uint64 timestamp

int32 temperature

optional float64 temperature_float

We’ll focus on
this option, for
the REP.

Temperature.msg
uint64 timestamp
float64 temperature

\ Note: you can’t actually do this right now.

(’ ?opbeor]c icS

The Proposed Solution

o REP-2011:
o https://github.com/ros -infrastructure/rep/pull/358

e REP-2011 aims to help users:
o Know when messages have changed
o Convert between versions on demand
o Write code to convert between versions
e |t will do so by depending on the ability to:
o Interact with types using only their description
e This REP does not try to:
o Expose “advanced” serialization features like
optional fields, extensible types, or inheritance
o Prevent these “advanced” features from working

" ?opbeont icS

https://github.com/ros-infrastructure/rep/pull/358

What will this look like in practice?

% ros2 topic echo /scan sensor_msgs/msg/LaserScan

[WARN] [1666081526.522630000] [ros2 bag]: Publisher '[gid...]' on topic '/scan' 1is
using a version of 'sensor_msgs/msg/LaserScan' ('abc123') that does not match the
version used locally ('def456').

% ros2 interface transfer_functions info sensor_msgs/msg/LaserScan abc123 def456

Conversion available with transfer functions:
- [abc123 -> cba321]:
- pkg: sensor_msgs_migration
- description: new field added to describe ...
- [cba321 -> def456]:
- pkg: sensor_msgs_migration

- description: changed the type of field ...

(’ ?Opbeor][icS

What will this look like in practice?

" ros2 bag ... ‘ ‘ ros2 topic echo ...

\ _I Publisher<LaserScan@abc123> }7 /scan —)| Subscription<LaserScan @ defd56= I_ /

ros2 topic echo ...
Sl m P o = g Y = 0T A F A B
subscription<Laserscan(@ defd 56

@abc123= Publisher<LaserScan@defd56= —_—

F

— = Transfer Funcs. abc123->def456

ros2 interface convert_topic_types ...

" ?opbeor]c icS

What will this look like in practice?

% ros2 interface convert_topic_types \

--from /scan \
--to /updated/scan \

--component-container <container name>

ros2 bag ... ‘ ros2 topic echo ...

I Publisher<LaserScan@abc123> ‘ ‘ Subscription<LaserScan @ defd56= I _

| 1

feran 4)| Subscription<LaserScan@abc123> H Publisher<LaserScan @ defd4 56> If Jupdated/scan

—:--;j:f Transfer Funcs. abc123->def456 >—T

ros2 interface convert_topic_types ...

% ros2 topic echo /updated/scan sensor_msgs/msg/LaserScan

(’ ?opbeor]t icS

What will this look like in practice?

e \Ways to set up conversions:
o as a stand-alone node
o as a hode component
o syntactic sugar in a launch file
e Benefits of this approach:
o keeps QoS and queuing in middleware
o easy to observe from tools (e.g. rqt_graph)
e Downsides of this approach:
o requires extra topics and hops through pub/sub
o requires transfer functions to exist

(’ ?opbeor]c icS

Needed Underlying Technical Changes

e Run-Time Interface Reflection
o Interacting with types using only the
TypeDescription, i.e. reading, writing, sending, and
receiving

" ?opbeont icS

Run-Time Interface Reflection

" ?opbeor]c icS

The Context

Normally for ROS:
Message files — Compile-time Generated Code and Headers

e E.g. String.msg — std_msgs::msg::String
(std_msgs/msg/string.hpp)

But what if...

e You don’t have the message headers

e But you obtain the message description at runtime
o E.g. From a bagfile, published over a topic, etc.

" ?opbeont icS

Run-time Interface Reflection

“At run -time, given a byte buffer and its description...
Can we access its members?”

6d 65 74 68 79 6¢ 44
726167 64 6e ... e

—>

Interface
Reflection

-

-

{fields’: [(O, ‘string’)]}r\

‘raw_byte ser”

(’ ?opbeor]t icS

API| to access
the buffer

~N

e

List fields
Get and set fields

Construct new message instances

Pub-Sub (At run-tmme)

Using interface reflection , and a message
description , dynamically create at run-time...

-

~

Message < Must be parsed
Description (Dynamic Type)
A\ | J
create— create ——create

v
[Publishers } [Subscribers} [Messages }

(’ ?opbeor]t icS

T Must allow get/set
(Dynamic Data)

Pub-Sub (At run-time)

Pub

1. Parse description to create a dynamic type
2. Use dynamic type to create dynamic data
3. Publish dynamic data

Sub

1. Receive dynamic data
2. Parse description to create a dynamic type
3. Use dynamic type to access dynamic data

" ?opbeor}c icS

How will run-time mterface reflection be
implemented?

" ?opbeor]c icS

Reflection for Different Technologies

For most technologies, we can just create a wrapper

‘ Technology ‘ Dynamic Type ‘ Dynamic Data ‘
FastRTPS (C++) DynamicType DynamicData
RTI Connext (C) DDS_TypeCode DDS_DynamicData
Protobuf (C++) FileDescriptorProto DynamicMessage

For middlewares that don’t have structured messages,
we can just piggyback off any serialization library (e.g. FastCDR)

The type description helps retain type mformation!

" ?opbeor]t icS

Run-tme Interface Reflection Library

This functionality should be a standalone C library that can be used

separately from RMW.

The run-time interface reflection library should abstract away
serialization! (By piggybacking offa middleware or wrapping a serialization

lib!) e
Application Code i [rmw / rcl] [roshag] [User Code
______________________________________ R Al
{ Interface Reflection LIBRARY
R N 1 [
: A 4 h 4
SSvyappap le I |, FastRTPS J (Protobuf } [RTI ConnextJ o000
erialization :
"open This library should be able to support non-DDS, non-XTypes
robotics libs! (e.g. Protobuf/Zenoh)

Demo

We made a prototype to check for feasibility and refine the interfaces

& It WORKS with FastDDS pub-sub!! &

(And there’s a protobuf dynamic example too!!)

methylDragon/ros-type-
introspection-prototype

a1 ®o w0 g0 O

Contributor |ssues Stars Forks

" ?opbeor}c icS

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/

Future Work

" ?opbeor}c icS

Future Work

e More prototypes (e.g. Connext)
e Create the interfaces to abstract away getters and
setters

e Type description distribution
e Plug it all into rcl/rmw!

" ?opbeont icS

Known Issues

e Some bugs need to be fixed in middlewares
related to run-time interface reflection

e Some middlewares lack the necessary interfaces
right now

e Some conceptual discrepancies in the type
description message, e.g. bounded sequences of
bounded strings

" ?opbeont icS

Questions

This presentation: https://bit.ly/3dFitlg
The REP PR: https://tinyurl.com/rep-2011-pr

E]

Presentation Slides

(’ ?opbeor]c icS

https://bit.ly/3dFitlq
https://tinyurl.com/rep-2011-pr

Appendix

Pub-Sub
Publisher w (Subscription\

Type Description Distribution

[.msg / .idl]—)[type description]— —————————————)[type description}

[Dynamic Type 1 [Dynamic Type }
creates instance of reads
VL Middleware Jr

[Dynamic Data }- -------------)[Dynamic Data }
N Y . Y,

(’ ?opbeor]t icS

Demo: It works! (FastDDS Pub-Sub)

L]
methyldragon@methyldragon-V

$ ros2 run evolving_seriali examples fastrips_evolving_pub I

Pub-sub Demo Code

(’Open . tinyurl.com/fastdds-ets-pubsub
robotics

Demo

We made a prototype to check for feasibility and refine the interfaces

& It with FastDDS pub-sub!! &

(And there’s a protobuf dynamic example too!!)

methylDragon/ros-type-
introspection-prototype

a1 ®o w0 T 0 0

Contributor Issues Stars Forks

(’ ?opbeor]t icS

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/

Demo: Type Description

(’ ?opbeor]t icS

FastDDS Prototype: Type Description

The type description t struct allows us to
iterate through the fields and obtain
necessary information to construct the

type.

(’ ?opbeor]tis -

FastDDS Prototype: ETS

The EvolvingTypeSupport (ETS)is a
C interface to be filled by any downstream
implementations!

(’ ?opbeor]t icS

FastDDS Prototype: ETS

59 _type = ep a::fastrt JynamicType ptr(

With the type description t struct, we can
iterate through the fields and call the
necessary methods to create the type!

(’ ?opbeor]t icS

Demo: It works! (FastDDS Pub)

You can use the same interface on the
subscription side!

This 1s grabbed at runtime!

(’ ?opbeor]t icS

Demo: It also works for protobuf (no protoc)!

—= GENERATED PROTO == : :
syntax = "proto3"; In this case the DynamicType comes

from a runtime-generated .proto file!

ge ExampleMs¢

qrﬂtic_crr.y_fieldzz;
We use the DynamicMessage interfaces
from protobufto construct the message

e inner { from th ner pr fil nten
eated inner_inner doubly nested seq of msg field=1; 0 the gene e P oto file contents

message inner_inner {
float doubly_nested float32_field=1;
The demo repo includes the

proto file generator library! (protogen)

o oy oy B

n 2022

ay field: [true, false, true]

sg_field {
32_field: 0.1

4
doubly_nested_seq_of_msg_field {
i

(’ ?opbeor]t icS

JL

tinyurl.com/protobuf-dyn-ser

	Evolving Messages Over Time - REP-2011
	Slide Number 2
	REP-2011
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Run-Time Interface Reflection
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	How will run-time interface reflection be implemented?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Future Work
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Appendix
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

