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● Conceptual Overview of REP-2011
● New Features Needed in ROS 2
● Dive into Run-Time Interface Reflection
● Future Work and Known Issues

Overview



REP-2011



Reasons for this REP:
● It is  natural for types  to evolve over time

○ In your projects
○ And in ROS 2 itself

● We need tools  to detect when this  happens
● We need tools  to help trans ition between vers ions

Motivation for REP-2011



In ROS 2 today:
● If you try to change a type unevenly across  your 

sys tem:
○ Some middlewares  may allow communication, 

depending on the change
○ Warnings /errors  when types  are incompatible vary
○ Limited features  exposed in ROS 2 to help you 

evolve types  in a backward/forward way

The Problem



The Problem - Example

# Temperature.msg
uint64 timestamp

int32 temperature

What if we want 
to change this?



The Problem - Example

# Temperature.msg
uint64 timestamp

int32 temperature

# Temperature.msg

uint64 timestamp

float64 temperature

# Temperature.msg

uint64 timestamp

int32 temperature

optional float64 temperature_float

What if we want 
to change this?

❓ ❓
Add a new, but 
redundant, optional 
field?

Just change 
the type 
directly?

Note: you can’t actually do this right now.



The Problem - Example

# Temperature.msg
uint64 timestamp

int32 temperature

# Temperature.msg

uint64 timestamp

float64 temperature

# Temperature.msg

uint64 timestamp

int32 temperature

optional float64 temperature_float

What if we want 
to change this?

✅ ✅
You can do either, if 
the middleware 
supports it.

We’ll focus on 
this option, for 

the REP.

Note: you can’t actually do this right now.



● REP-2011:
○ https://github.com/ros -infrastructure/rep/pull/358

● REP-2011 aims to help users:
○ Know when messages have changed
○ Convert between versions on demand
○ Write code to convert between versions

● It will do so by depending on the ability to:
○ Interact with types using only their description

● This REP does not try to:
○ Expose “advanced” serialization features like 

optional fields, extensible types, or inheritance
○ Prevent these “advanced” features from working

The Proposed Solution

https://github.com/ros-infrastructure/rep/pull/358


What will this look like in practice?

% ros2 topic echo /scan sensor_msgs/msg/LaserScan

[WARN] [1666081526.522630000] [ros2_bag]: Publisher '[gid...]' on topic '/scan' is 

using a version of 'sensor_msgs/msg/LaserScan' ('abc123') that does not match the 

version used locally ('def456').

% ros2 interface transfer_functions info sensor_msgs/msg/LaserScan abc123 def456

Conversion available with transfer functions:

- [abc123 -> cba321]:

- pkg: sensor_msgs_migration

- description: new field added to describe ...

- [cba321 -> def456]:

- pkg: sensor_msgs_migration

- description: changed the type of field ...



What will this look like in practice?



What will this look like in practice?

% ros2 topic echo /updated/scan sensor_msgs/msg/LaserScan

...

% ros2 interface convert_topic_types \

--from /scan \

--to /updated/scan \

# --component-container <container name>



What will this look like in practice?

● Ways to set up conversions:
○ as a stand-alone node
○ as a node component
○ syntactic sugar in a launch file

● Benefits of this approach:
○ keeps QoS and queuing in middleware
○ easy to observe from tools (e.g. rqt_graph)

● Downsides of this approach:
○ requires extra topics and hops through pub/sub
○ requires transfer functions to exist



● TypeDescription.msg
○ Description of Other Message/Service/etc.

● Type Version Hashing and Enforcement
○ Generation and Access via ROS Graph APIs

● Type Description Distribution
○ Accessing definition of types remotely

● Run-Time Interface Reflection
○ Interacting with types using only the 

TypeDescription, i.e. reading, writing, sending, and 
receiving

Needed Underlying Technical Changes



Run-Time Interface Reflection



But what if…
● You don’t have the message headers
● But you obtain the message description at runtime

○ E.g. From a bagfile, published over a topic, etc.

The Context

Normally for ROS:
Message files → Compile-time Generated Code and Headers
● E.g. String.msg → std_msgs::msg::String 

(std_msgs/msg/string.hpp)



“At run -time, given a byte buffer and its description…
Can we access its members?”

Run-time Interface Reflection

6d 65 74 68 79 6c 44 
72 61 67 64 6e ...

{‘fields’: [(0, ‘string’)]}

“raw_byte_ser” ● List fields
● Get and set fields
● Construct new message instances
● …



Using interface reflection , and a message 
description , dynamically create at run-time…

Pub-Sub (At run-time)

Must be parsed
(Dynamic Type )

Mus t allow get/set
(Dynamic Data )



Pub
1. Parse description to create a dynamic type
2. Use dynamic type to create dynamic data
3. Publish dynamic data

Pub-Sub (At run-time)

Sub
1. Receive dynamic data
2. Parse description to create a dynamic type
3. Use dynamic type to access dynamic data



How will run-time interface reflection be 
implemented?



For most technologies, we can just create a wrapper

Reflection for Different Technologies

Technology Dynamic Type Dynamic Data

FastRTPS (C++) DynamicType DynamicData

RTI Connext (C) DDS_TypeCode DDS_DynamicData

Protobuf (C++) FileDescriptorProto DynamicMessage

… … …

For middlewares  that don’t have s tructured messages ,
we can jus t piggyback off any serialization library (e.g. Fas tCDR)

The type description helps  retain type information!



This functionality should be a standalone C library that can be used 
separately from RMW.

Run-time Interface Reflection Library

The run -time interface reflection library should abstract away 
serialization! (By piggybacking off a  middleware or wrapping a serialization 
lib!)

This  library should be able to support non-DDS, non-XTypes  
libs ! (e.g. Protobuf/Zenoh)



Demo
We made a prototype to check for feas ibility and refine the interfaces

✨ It WORKS with Fas tDDS pub-sub!! ✨
(And there’s a protobuf dynamic example too!!)

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/


Future Work



● More prototypes (e.g. Connext)
● Create the interfaces to abstract away getters and 

setters

● Type description distribution
● Plug it all into rcl/rmw!

Future Work



● Some bugs need to be fixed in middlewares 
related to run-time interface reflection

● Some middlewares lack the necessary interfaces 
right now

● Some conceptual discrepancies in the type 
description message, e.g. bounded sequences of 
bounded strings

Known Issues



This presentation: https ://bit.ly/3dFitlq
The REP PR: https ://tinyurl.com/rep-2011-pr

Ques tions

Presentation Slides

https://bit.ly/3dFitlq
https://tinyurl.com/rep-2011-pr


Appendix



Pub-Sub



Pub-sub Demo Code

tinyurl.com/fastdds-ets-pubsub

Demo: It works! (Fas tDDS Pub-Sub)



Demo
We made a prototype to check for feas ibility and refine the interfaces

✨ It WORKS with Fas tDDS pub-sub!! ✨
(And there’s a protobuf dynamic example too!!)

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/


Demo: Type Description



FastDDS Prototype: Type Description

The type_description_t s truct allows  us  to 
iterate through the fields  and obtain 
necessary information to cons truct the 
type.



FastDDS Prototype: ETS

The EvolvingTypeSupport (ETS) is  a
C interface to be filled by any downs tream 
implementations !



FastDDS Prototype: ETS

With the type_description_t s truct, we can 
iterate through the fields  and call the 
necessary methods  to create the type!



Demo: It works! (FastDDS Pub)
You can use the same interface on the 

subscription s ide!

This  is  grabbed at runtime!



The demo repo includes the
proto file generator library! (protogen)

tinyurl.com/protobuf-dyn-ser

In this  case the DynamicType comes  
from a runtime-generated .proto file!

Demo: It also works  for protobuf (no protoc)!

We use the DynamicMessage interfaces  
from protobuf to cons truct the message 
from the generated .proto file contents
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