
Evolving Messages Over Time - REP-2011
William Woodall <william@openrobotics .org>
Brandon Ong <brandon@openrobotics .org>
You Liang Tan <tan_you_liang@hotmail.com>
Kyle Marcey <kyle.marcey@apex.ai>

October 2022

mailto:william@openrobotics.org
mailto:brandon@openrobotics.org
mailto:tan_you_liang@hotmail.com
mailto:kyle.marcey@apex.ai

● Conceptual Overview of REP-2011
● New Features Needed in ROS 2
● Dive into Run-Time Interface Reflection
● Future Work and Known Issues

Overview

REP-2011

Reasons for this REP:
● It is natural for types to evolve over time

○ In your projects
○ And in ROS 2 itself

● We need tools to detect when this happens
● We need tools to help trans ition between vers ions

Motivation for REP-2011

In ROS 2 today:
● If you try to change a type unevenly across your

sys tem:
○ Some middlewares may allow communication,

depending on the change
○ Warnings /errors when types are incompatible vary
○ Limited features exposed in ROS 2 to help you

evolve types in a backward/forward way

The Problem

The Problem - Example

Temperature.msg
uint64 timestamp

int32 temperature

What if we want
to change this?

The Problem - Example

Temperature.msg
uint64 timestamp

int32 temperature

Temperature.msg

uint64 timestamp

float64 temperature

Temperature.msg

uint64 timestamp

int32 temperature

optional float64 temperature_float

What if we want
to change this?

❓ ❓
Add a new, but
redundant, optional
field?

Just change
the type
directly?

Note: you can’t actually do this right now.

The Problem - Example

Temperature.msg
uint64 timestamp

int32 temperature

Temperature.msg

uint64 timestamp

float64 temperature

Temperature.msg

uint64 timestamp

int32 temperature

optional float64 temperature_float

What if we want
to change this?

✅ ✅
You can do either, if
the middleware
supports it.

We’ll focus on
this option, for

the REP.

Note: you can’t actually do this right now.

● REP-2011:
○ https://github.com/ros -infrastructure/rep/pull/358

● REP-2011 aims to help users:
○ Know when messages have changed
○ Convert between versions on demand
○ Write code to convert between versions

● It will do so by depending on the ability to:
○ Interact with types using only their description

● This REP does not try to:
○ Expose “advanced” serialization features like

optional fields, extensible types, or inheritance
○ Prevent these “advanced” features from working

The Proposed Solution

https://github.com/ros-infrastructure/rep/pull/358

What will this look like in practice?

% ros2 topic echo /scan sensor_msgs/msg/LaserScan

[WARN] [1666081526.522630000] [ros2_bag]: Publisher '[gid...]' on topic '/scan' is

using a version of 'sensor_msgs/msg/LaserScan' ('abc123') that does not match the

version used locally ('def456').

% ros2 interface transfer_functions info sensor_msgs/msg/LaserScan abc123 def456

Conversion available with transfer functions:

- [abc123 -> cba321]:

- pkg: sensor_msgs_migration

- description: new field added to describe ...

- [cba321 -> def456]:

- pkg: sensor_msgs_migration

- description: changed the type of field ...

What will this look like in practice?

What will this look like in practice?

% ros2 topic echo /updated/scan sensor_msgs/msg/LaserScan

...

% ros2 interface convert_topic_types \

--from /scan \

--to /updated/scan \

--component-container <container name>

What will this look like in practice?

● Ways to set up conversions:
○ as a stand-alone node
○ as a node component
○ syntactic sugar in a launch file

● Benefits of this approach:
○ keeps QoS and queuing in middleware
○ easy to observe from tools (e.g. rqt_graph)

● Downsides of this approach:
○ requires extra topics and hops through pub/sub
○ requires transfer functions to exist

● TypeDescription.msg
○ Description of Other Message/Service/etc.

● Type Version Hashing and Enforcement
○ Generation and Access via ROS Graph APIs

● Type Description Distribution
○ Accessing definition of types remotely

● Run-Time Interface Reflection
○ Interacting with types using only the

TypeDescription, i.e. reading, writing, sending, and
receiving

Needed Underlying Technical Changes

Run-Time Interface Reflection

But what if…
● You don’t have the message headers
● But you obtain the message description at runtime

○ E.g. From a bagfile, published over a topic, etc.

The Context

Normally for ROS:
Message files → Compile-time Generated Code and Headers
● E.g. String.msg → std_msgs::msg::String

(std_msgs/msg/string.hpp)

“At run -time, given a byte buffer and its description…
Can we access its members?”

Run-time Interface Reflection

6d 65 74 68 79 6c 44
72 61 67 64 6e ...

{‘fields’: [(0, ‘string’)]}

“raw_byte_ser” ● List fields
● Get and set fields
● Construct new message instances
● …

Using interface reflection , and a message
description , dynamically create at run-time…

Pub-Sub (At run-time)

Must be parsed
(Dynamic Type)

Mus t allow get/set
(Dynamic Data)

Pub
1. Parse description to create a dynamic type
2. Use dynamic type to create dynamic data
3. Publish dynamic data

Pub-Sub (At run-time)

Sub
1. Receive dynamic data
2. Parse description to create a dynamic type
3. Use dynamic type to access dynamic data

How will run-time interface reflection be
implemented?

For most technologies, we can just create a wrapper

Reflection for Different Technologies

Technology Dynamic Type Dynamic Data

FastRTPS (C++) DynamicType DynamicData

RTI Connext (C) DDS_TypeCode DDS_DynamicData

Protobuf (C++) FileDescriptorProto DynamicMessage

… … …

For middlewares that don’t have s tructured messages ,
we can jus t piggyback off any serialization library (e.g. Fas tCDR)

The type description helps retain type information!

This functionality should be a standalone C library that can be used
separately from RMW.

Run-time Interface Reflection Library

The run -time interface reflection library should abstract away
serialization! (By piggybacking off a middleware or wrapping a serialization
lib!)

This library should be able to support non-DDS, non-XTypes
libs ! (e.g. Protobuf/Zenoh)

Demo
We made a prototype to check for feas ibility and refine the interfaces

✨ It WORKS with Fas tDDS pub-sub!! ✨
(And there’s a protobuf dynamic example too!!)

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/

Future Work

● More prototypes (e.g. Connext)
● Create the interfaces to abstract away getters and

setters

● Type description distribution
● Plug it all into rcl/rmw!

Future Work

● Some bugs need to be fixed in middlewares
related to run-time interface reflection

● Some middlewares lack the necessary interfaces
right now

● Some conceptual discrepancies in the type
description message, e.g. bounded sequences of
bounded strings

Known Issues

This presentation: https ://bit.ly/3dFitlq
The REP PR: https ://tinyurl.com/rep-2011-pr

Ques tions

Presentation Slides

https://bit.ly/3dFitlq
https://tinyurl.com/rep-2011-pr

Appendix

Pub-Sub

Pub-sub Demo Code

tinyurl.com/fastdds-ets-pubsub

Demo: It works! (Fas tDDS Pub-Sub)

Demo
We made a prototype to check for feas ibility and refine the interfaces

✨ It WORKS with Fas tDDS pub-sub!! ✨
(And there’s a protobuf dynamic example too!!)

https://emojipedia.org/sparkles/
https://emojipedia.org/sparkles/

Demo: Type Description

FastDDS Prototype: Type Description

The type_description_t s truct allows us to
iterate through the fields and obtain
necessary information to cons truct the
type.

FastDDS Prototype: ETS

The EvolvingTypeSupport (ETS) is a
C interface to be filled by any downs tream
implementations !

FastDDS Prototype: ETS

With the type_description_t s truct, we can
iterate through the fields and call the
necessary methods to create the type!

Demo: It works! (FastDDS Pub)
You can use the same interface on the

subscription s ide!

This is grabbed at runtime!

The demo repo includes the
proto file generator library! (protogen)

tinyurl.com/protobuf-dyn-ser

In this case the DynamicType comes
from a runtime-generated .proto file!

Demo: It also works for protobuf (no protoc)!

We use the DynamicMessage interfaces
from protobuf to cons truct the message
from the generated .proto file contents

	Evolving Messages Over Time - REP-2011
	Slide Number 2
	REP-2011
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Run-Time Interface Reflection
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	How will run-time interface reflection be implemented?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Future Work
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Appendix
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

