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Overview
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Motivation

Reliability and Safety are essential for autonomous vehicles and robots.
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How?

Mitigating Single Points of Failure (SPOFs)
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So, How?

Enhancing high availability of safety -critical modules using redundancy ( = clustering)
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FOROS
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Failover ROS Framework 

An open source ROS2 framework that can be used to provide redundancy for safety -

critical nodes using a RAFT consensus algorithm with minimal effort.

Fail Operational
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Constraint

This framework can tolerate failures equal to the cluster size minus quorum .

This framework tolerates fail - stop failure but NOT Byzantine failure

• Fail - stop failure : the component stops operating.
• Byzantine failure : there is imperfect information on whether a component has failed

Cluster Size
(N)

Quorum
(Q = N / 2 + 1)

Number of fault tolerant nodes
(N - Q)

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2
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Core Features

● Leader election : determination of active nodes by election

● Log replication : consensus -based data storage. Mainly used for state replication

● Inspector : a tool for monitoring the status of clusters.

Leader election Leader election

State State State State State State

Log replication = State replication State restoration

A2 A3

Active Standby Standby

A1 A2 A3

Failed Active Standby

A1
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Leader Election

All nodes have one of the following states: 'Follower', 'Candidate' , or 'Leader'

Follower Candidate Leader

Election timeout, starts election

Receives votes from 
majority

Discovers new leader

<State Machine>
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Leader Election

All nodes start in ‘ Follower’ state
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Leader Election

If a ‘Follower’ does not receive a ‘Leader’ heartbeat for a certain period of time, it is 

changed to ‘Candidate’ and an election is held

A1

<Candidate>

A2

<Follower>

A3

<Follower>

1. Election timeout, starts election

2. Vote for me 3. Request a vote
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Leader Election

When a ‘Candidate’ receives a majority of the votes, it becomes the ‘Leader’ .

A1

<Leader>

A2

<Follower>

A3

<Follower>

1. Get a vote

2. Received votes from majority
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Leader Election

The 'Leader' periodically sends heartbeats to prevent elections for new leaders.

A1

<Leader>

A2

<Follower>

A3

<Follower>

1. Send heartbeat
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Leader Election

The complex leader election process is all handled within the FOROS framework.

Developers only need to consider ‘ Standby ’ and ‘Active ’ states.

Standby Active

Transitioned to ‘Leader’ state

Transitioned to ‘Follower’ state

Filter the messages below :

- Published topics

- Received service requests
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Leader Election : How to Use

Simple! Use ClusterNode c las s  ins te ad  of rclcpp ::Node . 

auto node = akit::failover::foros::ClusterNode::make_shared(

"Test_cluster", // Cluster Name

0, // Node ID

std::initializer_list<uint32_t>{0, 1, 2} // Node IDs in the given cluster

);

node->register_on_activated([&]() { RCLCPP_INFO(logger, "activated"); });

node->register_on_standby([&]() { RCLCPP_INFO(logger, "standby"); });

Re gis te r s ta te  trans ition ca llbacks  us ing register_on_activated , register_on_standby
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Log Replication

When the ‘Leader’ requests to store data, it requests data synchronization from other 

nodes and succeeds when more than half of the nodes are synchronized

A1
<Leader>

A2
<Follower>

A3
<Failed>

Request to store Synchronization Stored
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Log Replication : How to Use

Use commit_command to re que s t to s tore  da ta  

node->commit_command(

akit::failover::foros::Command::make_shared(std::initializer_list<uint8_t>{

1}),

[&](akit::failover::foros::CommandCommitResponseSharedFuture

response_future) {

auto response = response_future.get();

if (response->result() == true) {

RCLCPP_INFO(logger, "commit completed");

} else {

RCLCPP_ERROR(logger, "commit failed");

}

});
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Log Replication : How to Use

Use get_commands_size , get_command to ge t s tore d  da ta .

Use  register_on_committed , register_on_reverted to re gis te r commit/re ve rt ca llback.

int len = node->get_commands_size();

auto command = get_command(len - 1);

node->register_on_committed(

[&](int64_t id, akit::failover::foros::Command::SharedPtr command) {

RCLCPP_INFO(logger, "command commited : %ld, %d", id, command->data()[0]);

});

node->register_on_reverted([&](int64_t id) {

RCLCPP_INFO(logger, "command reverted until : %ld", id);

});
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Inspector

Visualize active cluster information and node information in the cluster with TUI

Name Cluster Name

Size Cluster Size

Term Election No.

Active Active Node IDs

Leader Leader ID

Details : Node Information

Node ID Node ID

State State

Term Election No.

Voted For ID

Data Size Stored Data Size

Size Cluster Size

Summary : Cluster Information
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Links

- FOROS Github : https://github.com/42dot/foros

- FOROS Wiki : https://github.com/42dot/foros/wiki

- RAFT : https://raft.github.io/

- RAFT Paper : https://raft.github.io/raft.pdf

- 42dot : https://42dot.ai/

https://github.com/42dot/foros
https://github.com/42dot/foros/wiki
https://raft.github.io/
https://raft.github.io/raft.pdf
https://42dot.ai/
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Q&A
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