
github.com/42dot/foros

FOROS
Failover ROS Framework

Wonguk Jeong ( wonguk.jeong@42dot.ai )

mailto:wonguk.jeong@42dot.ai


github.com/42dot/foros

Overview



github.com/42dot/foros

Motivation

Reliability and Safety are essential for autonomous vehicles and robots.



github.com/42dot/foros

How?

Mitigating Single Points of Failure (SPOFs)

Planner

Control

Perception

Sensor

System Health Monitor

Planner

Control

Perception

Sensor

System Health Monitor

SPoF

Failed

Failed



github.com/42dot/foros

So, How?

Enhancing high availability of safety -critical modules using redundancy ( = clustering)

Planner

Control

Perception

Sensor

System Health Monitor

System Health MonitorSystem Health Monitor

System Health Monitor System Health Monitor

Planner

Control

Perception

Sensor

System Health MonitorActive

Standby

Standby

Failed

Active

Standby



github.com/42dot/foros

FOROS



github.com/42dot/foros

Failover ROS Framework 

An open source ROS2 framework that can be used to provide redundancy for safety -

critical nodes using a RAFT consensus algorithm with minimal effort.

Fail Operational



github.com/42dot/foros

Constraint

This framework can tolerate failures equal to the cluster size minus quorum .

This framework tolerates fail - stop failure but NOT Byzantine failure

• Fail - stop failure : the component stops operating.
• Byzantine failure : there is imperfect information on whether a component has failed

Cluster Size
(N)

Quorum
(Q = N / 2 + 1)

Number of fault tolerant nodes
(N - Q)

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2



github.com/42dot/foros

Core Features

● Leader election : determination of active nodes by election

● Log replication : consensus -based data storage. Mainly used for state replication

● Inspector : a tool for monitoring the status of clusters.

Leader election Leader election

State State State State State State

Log replication = State replication State restoration

A2 A3

Active Standby Standby

A1 A2 A3

Failed Active Standby

A1



github.com/42dot/foros

Leader Election

All nodes have one of the following states: 'Follower', 'Candidate' , or 'Leader'

Follower Candidate Leader

Election timeout, starts election

Receives votes from 
majority

Discovers new leader

<State Machine>



github.com/42dot/foros

Leader Election

All nodes start in ‘ Follower’ state

A1

<Follower>

A2

<Follower>

A3

<Follower>



github.com/42dot/foros

Leader Election

If a ‘Follower’ does not receive a ‘Leader’ heartbeat for a certain period of time, it is 

changed to ‘Candidate’ and an election is held

A1

<Candidate>

A2

<Follower>

A3

<Follower>

1. Election timeout, starts election

2. Vote for me 3. Request a vote



github.com/42dot/foros

Leader Election

When a ‘Candidate’ receives a majority of the votes, it becomes the ‘Leader’ .

A1

<Leader>

A2

<Follower>

A3

<Follower>

1. Get a vote

2. Received votes from majority



github.com/42dot/foros

Leader Election

The 'Leader' periodically sends heartbeats to prevent elections for new leaders.

A1

<Leader>

A2

<Follower>

A3

<Follower>

1. Send heartbeat



github.com/42dot/foros

Leader Election

The complex leader election process is all handled within the FOROS framework.

Developers only need to consider ‘ Standby ’ and ‘Active ’ states.

Standby Active

Transitioned to ‘Leader’ state

Transitioned to ‘Follower’ state

Filter the messages below :

- Published topics

- Received service requests



github.com/42dot/foros

Leader Election : How to Use

Simple! Use ClusterNode c las s  ins te ad  of rclcpp ::Node . 

auto node = akit::failover::foros::ClusterNode::make_shared(

"Test_cluster", // Cluster Name

0, // Node ID

std::initializer_list<uint32_t>{0, 1, 2} // Node IDs in the given cluster

);

node->register_on_activated([&]() { RCLCPP_INFO(logger, "activated"); });

node->register_on_standby([&]() { RCLCPP_INFO(logger, "standby"); });

Re gis te r s ta te  trans ition ca llbacks  us ing register_on_activated , register_on_standby



github.com/42dot/foros

Log Replication

When the ‘Leader’ requests to store data, it requests data synchronization from other 

nodes and succeeds when more than half of the nodes are synchronized

A1
<Leader>

A2
<Follower>

A3
<Failed>

Request to store Synchronization Stored



github.com/42dot/foros

Log Replication : How to Use

Use commit_command to re que s t to s tore  da ta  

node->commit_command(

akit::failover::foros::Command::make_shared(std::initializer_list<uint8_t>{

1}),

[&](akit::failover::foros::CommandCommitResponseSharedFuture

response_future) {

auto response = response_future.get();

if (response->result() == true) {

RCLCPP_INFO(logger, "commit completed");

} else {

RCLCPP_ERROR(logger, "commit failed");

}

});



github.com/42dot/foros

Log Replication : How to Use

Use get_commands_size , get_command to ge t s tore d  da ta .

Use  register_on_committed , register_on_reverted to re gis te r commit/re ve rt ca llback.

int len = node->get_commands_size();

auto command = get_command(len - 1);

node->register_on_committed(

[&](int64_t id, akit::failover::foros::Command::SharedPtr command) {

RCLCPP_INFO(logger, "command commited : %ld, %d", id, command->data()[0]);

});

node->register_on_reverted([&](int64_t id) {

RCLCPP_INFO(logger, "command reverted until : %ld", id);

});



github.com/42dot/foros

Inspector

Visualize active cluster information and node information in the cluster with TUI

Name Cluster Name

Size Cluster Size

Term Election No.

Active Active Node IDs

Leader Leader ID

Details : Node Information

Node ID Node ID

State State

Term Election No.

Voted For ID

Data Size Stored Data Size

Size Cluster Size

Summary : Cluster Information



github.com/42dot/foros

Links

- FOROS Github : https://github.com/42dot/foros

- FOROS Wiki : https://github.com/42dot/foros/wiki

- RAFT : https://raft.github.io/

- RAFT Paper : https://raft.github.io/raft.pdf

- 42dot : https://42dot.ai/

https://github.com/42dot/foros
https://github.com/42dot/foros/wiki
https://raft.github.io/
https://raft.github.io/raft.pdf
https://42dot.ai/


github.com/42dot/foros

Q&A


	Slide Number 1
	Slide Number 2
	Motivation
	How?
	So, How?
	Slide Number 6
	Failover ROS Framework 
	Constraint
	Core Features
	Leader Election
	Leader Election
	Leader Election
	Leader Election
	Leader Election
	Leader Election
	Leader Election : How to Use
	Log Replication
	Log Replication : How to Use
	Log Replication : How to Use
	Inspector
	Links
	Slide Number 22

