
Grey, Yadunund
ROSCon Kyoto 2022

Day 1- 20 Oct

How custom tasks are
defined, assigned, and
executed in Open-RMF

 Overview of
this talk

Operational
challenges with
multiple fleets

Execution
of Tasks

Multi-fleet
task

allocation
framework

Modelling and
Assignment of

Composable
Tasks

Image credits:
LG, AP, IIAC, Imaginechina, AFP, Ottonomy

The need for robotic
interoperability is

on the rise

Managing daily operations of multiple robot
fleets is challenging

Capabilities of fleets may be
specialized or shared

Deliver

Patrol

Clean
Operators

Robotic fleets
in the facility

I need
supplies to be

delivered I cannot
fulfil

deliveries

I can
deliver
but I’m

busy now

I can deliver
but I have

low battery

Dashboard for
each fleet

Greet

Functional requirements for a task
management framework

● Flexible
● Predictive modelling
● Platform agnostic Can I coordinate

robots from two
different fleets to
perform a task?

Can I reuse an
existing robot to
execute a more

complex workflow?

Do I need to decide
which robot performs

which task?

Requirement: A framework for constructing task definitions
at runtime, assigning the task to the most available
fleet/robot and managing the task’s execution.

Overview

Overview

Operators

Pickup X items
at A and drop Y
& Z items at at
B and C resp.

Overview

Task Request

Overview

Overview

Overview

Each fleet adapter is capable
of:

● Validating whether its
fleet can perform the
task

● Solving a Multi-robot
Task Allocation
problem

Overview

1200 1100Bid cost 500

Winner!

What is a "Task"?

Predictive Model
inputs: (initial state prediction, robot description)
output: predicted state after task completion

Provided to a multi-agent task planner to
search for a "minimum-cost" assignment
of tasks to robots

Runtime
generates a sequence of task "phases"

Task Description
serializable data structure that

can be interpreted into...

Task Phase
monitors state of robot and infrastructure to issue
commands (e.g. navigate to location, open door,
summon elevator) to fulfill an objective of the task

Human operators or external systems can
request that a phase is skipped or repeated.
This is helpful if a phase did not go as intended.

⚠ Current Scope ⚠
The current implementation assumes each task is assigned to

one mobile robot and that individual tasks do not depend on each other.
Future versions of RMF will support

multi-agent tasks and constraints between tasks.

https://github.com/open-rmf/rmf_task

https://github.com/open-rmf/rmf_task

Task Descriptions
Simple, premade Custom, composed

{
 "category": "delivery",
 "description": {
 "pickup": {
 "place": "L2_pharmacy",
 "payload": [
 {"sku": "48052", "quantity": 2},
 {"sku": "37981", "quantity": 1}
]
 },
 "dropoff": {
 "place": "L3_ward32_bed4"
 }
 }
}

{
 "category": "compose",
 "description": {
 "detail": "Drop off medication and then greet the patient",
 "phases": [
 {
 "activity": {
 "category": "pickup",
 "description": {
 "place": "L2_pharmacy",
 "items": [{"sku": "48052", "quantity": 2}]
 }
 }
 },
 {
 "activity": {
 "category": "dropoff",
 "description": {
 "place": "L3_ward10_bed4",
 "items": [{"sku": "48052", "quantity": 2}]
 }
 },
 "on_cancel": [{
 "category": "dropoff",
 "description": {"place": "L2_pharmacy"}
 }]
 },
 {
 "activity": {
 "category": "greet",
 "description": {
 "place": "L3_ward10_bed4",
 "language": "Hokkien"
 }
 }
 }
]
 }
}

Common tasks can be given simple premade
description schemas with a minimal set of
parameters to fill in

Each category is associated with its own
description schema that can be interpreted by
task planners and executors.

More detailed instructions:
https://osrf.github.io/ros2multirobotbook/task_new.ht
ml

https://osrf.github.io/ros2multirobotbook/task_new.html
https://osrf.github.io/ros2multirobotbook/task_new.html

Task Descriptions

Predictive Models for Composed Tasks

Each leaf-node activities need to be either:
● an activity primitive with built-in support implemented in RMF
● a custom activity that the system integrator has plugged in an interpreter for

A predictive model for the whole task is assembled by chaining together the
predictive models of the leaf-node activities

https://github.com/open-rmf/rmf_task

https://github.com/open-rmf/rmf_task

Task Descriptions

Task Acceptance Criteria
Not all robots can perform all tasks...
Each different robot platform is integrated with its own RMF Adapter

● The adapter knows the description schema of each category that the platform can support
● The adapter knows robot-specific parameters, e.g. battery, speed, navigation graph, payload

capacity, and other capabilities like cleaning, scanning, greeting
If none of an adapter's robots can perform a task because of incompatibility, the task is rejected.

https://github.com/open-rmf/rmf_api_msgs

https://github.com/open-rmf/rmf_api_msgs

Allocation of tasks
Given M tasks of varying start times and descriptions, and Ni robots in F fleets,
● Distribute M tasks across F fleets such that

○ Robots are only assigned tasks they are capable of performing
○ Robots have sufficient resources (e.g. battery) to perform all assigned tasks
○ Overall optimality of assignments
○ Assumptions

■ Each task is executed by only one robot (no collaboration)
■ A robot will perform a task only after fully completing the previous task
■ Each robot is assigned a charger

https://github.com/open-rmf/rmf_task

https://github.com/open-rmf/rmf_task

Allocation of tasks
Given M tasks of varying start times and descriptions, and Ni robots in F fleets,
● Distribute M tasks across F fleets such that

○ Robots are only assigned tasks they are capable of performing
○ Robots have sufficient resources (e.g. battery) to perform all assigned tasks
○ Overall optimality of assignments
○ Assumptions

■ Each task is executed by only one robot (no collaboration)
■ A robot will perform a task only after fully completing the previous task
■ Each robot is assigned a charger

https://github.com/open-rmf/rmf_task

rmf_task::TaskPlanner

A* based search algorithm to determine the right sequence in which tasks
should be executed within the fleet to minimize overall time.

https://github.com/open-rmf/rmf_task

Allocation of tasks
RMF Task Allocation Planner- Other features

● Priority Assignment
○ Add a Priority field to task request
○ During node expansion, check if new

node assignments are valid
■ Valid = high priority tasks are

assigned prior to low priority
ones

○ If invalid, f(n) = g(n) + h(n) * penalty
● Finishing Task

○ Automatically include a task that the robot has
to perform at the end of its assignments

○ Park, ChargeBattery, etc

● Fleet adapters automatically replan task
assignments when a task is cancelled

● Battery charging tasks are automatically inserted
when needed

https://github.com/open-rmf/rmf_battery
https://github.com/open-rmf/rmf_task

https://docs.google.com/file/d/1Iu-WvwsaBukW-j290uCE-bW0_9yAAvqS/preview
https://github.com/open-rmf/rmf_battery
https://github.com/open-rmf/rmf_task

Execution
Activity Hierarchy
Execution is broken down into a hierarchy of "activities"

● delivery: medicine from pharmacy to ward31
● pickup: medicine from pharmacy

● go_to_place: pharmacy
● move_to: atrium door-entry wait point
● pass_through_door: atrium door

● open_door: atrium door
● move_to: atrium door-exit wait point
● close_door: atrium door

● move_to: pharmacy door-entry wait point
● ...

Each activity is publishing requests (e.g. navigation requests, open/close door requests) and
subscribing to state updates to manage the progress of the task
⚠ Currently activities at the same hierarchy level are treated as sequential, but future versions of
RMF will support parallel activities, conditional execution, branching, and activity loops

https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter/schemas

https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter/schemas

Execution
Phase Management
Each hierarchy is contained within a "Phase"

pickup: medicine from pharmacy

● go_to_place: pharmacy
● move_to: atrium door-entry wait point
● pass_through_door: atrium door

● open_door: atrium door
● move_to: atrium door-exit wait point
● close_door: atrium door

● move_to: pharmacy door-entry wait point
● ...

dropoff: medicine to ward31

● go_to_place: ward31
● move_to: pharmacy door-exit wait point
● pass_through_door: pharmacy door

● open_door: pharmacy door
● move_to: pharmacy door-entry wait point
● close_door: pharmacy door

● move_to: service lift Lobby A2
● ...

delivery task: medicine from pharmacy to ward31

on success

on cancel
dropoff: medicine to pharmacy

Phases are always sequential
* this limitation will be eased in future versions

A web-based API can be used to skip,
restart, or retry phases

Each phase can be assigned a cancellation
sequence that it will follow if the task is
cancelled while the phase is active

https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter/schemas

https://github.com/open-rmf/rmf_ros2/tree/main/rmf_fleet_adapter/schemas

Future work

● Generalized task compositions
● GUI for designing workflows

https://github.com/open-rmf/rmf/discussions/169

● Backend for scheduling recurring tasks
● Endpoints for modifying the schedule

https://github.com/open-rmf/rmf/discussions/169

Questions

