
Migrating from ROS1 to ROS2
choosing the right bridge



Our System
● ROS1 + Bazel + Docker + Flow

● 808 Topics 
● 326 Custom ROS Messages
● >300k Lines of C++ code
● 74 Nodes
● Freight100 Computer Specs

○ Freight100 v1 : 4 Cores @ 3.00GHz + 16G RAM
○ Freight100 v2 : 8 Cores @ 2.60GHz + 32G RAM 

FLOW
C++14, header-only 
library for multi-stream 
data synchronization.



ROS2 Conversion Strategies
1. Everything-at-once
2. Node-by-node using ros1_bridge
3. Topic-by-topic using combined ROS1/ROS2 Nodes



For Us : All-at-once Conversion
… is like replacing the engine in a moving car

Either stop making other 
changes and just focus on ROS2
… OR have merge conflicts with 
other new features

ROS is the engine that keeps 
things running.   Switching it,
means integration tests won’t be 
working when they are needed 
most

What about unanticipated issues 
that take a lot of extra time?



ROS2 Conversion Strategies
1. Everything-at-once :  Can’t break work into smaller pieces
2. Node-by-node
3. Topic-by-topic



ros1_bridge

ROS2 Conversion Strategies
1. Everything-at-once
2. Node-by-node : Using ros1_bridge 
3. Topic-by-topic



Node-by-node Conversion + ros1_bridge

Bridge 
these 
topics

● Convert a single node to ROS2
● Bridge any topics that are connected to ROS1 nodes
● Incremental progress!

ROS2



ros1_bridge : Overhead
● Extra (loop-back) network hop
● Extra deserialization
● Member-by-member copy ROS1 class -> ROS2 class
● Extra serialization

Serialize
ROS2

UDP/
TCP

Deserialize
ROS1TCPnodeDeserialize

ROS2
Copy elements
ROS2 -> ROS1

Serialize
ROS1

ros1_bridgeros2 node ros1 node

Deserialize
ROS1TCP

ros1 node

Serialize
ROS1

ros1 node



ros1_bridge : Latency and CPU Usage**

Size 
(bytes)

BW
(Mb/sec)

ROS1→ROS1
Latency (ms)

ROS2→ROS1
Latency (ms)

dynamic_bridge
CPU %

sensor_msgs/Imu
@ 100Hz

321 0.04 0.30 0.73 7.48

sensor_msgs/Image
640 x 360 x 3
@15Hz

691k 10.3 0.63 2.20 1.97 
Msg Drops

sensor_msgs/Image
*reliable QOS

691k 10.3 0.63 8.45 4.50

* ROS2 subscriber in 
dynamic_bridge defaults to “best 
effort” even if publisher is “reliable”

*  Each process pinned to its own core with 
fixed frequency of 2.4Gz
All processes are running on same 
machine.



Optimization : Write ROS2 Msgs directly to ROS1 Stream

nodeDeserialize
ROS2

Serialize
ROS2 Msg into
ROS1 Stream

ros1_bridge

template<>
void Factory<...>::convert_2_to_1(

const geometry_msgs::msg::Vector3 & ros2_msg,
geometry_msgs::Vector3 & ros1_msg)

{
ros1_msg.x = ros2_msg.x;
ros1_msg.y = ros2_msg.y;
ros1_msg.z = ros2_msg.z;

}

template<>
template<...>
Void 
Factory<...>::msg_2_to_1_stream(
STREAM_T & stream,
ROS2_MSG_T & ros2_msg)

{
stream.next(ros2_msg.x);
stream.next(ros2_msg.y);
stream.next(ros2_msg.z);

}

nodeDeserialize
ROS2

Copy elements
ROS2 -> ROS1

Serialize
ROS1

ros1_bridge

Each convert_2_to_1() call takes about 
340μsec for a 640x360x3 sensor_msgs::Image

340μsec * 15Hz = 0.5% CPU Usage

Each msg_2_to_1_stream() call also takes 
about 340μsec for same message



Ideal Node Graph (for bridged conversion to ROS2) 
● Break up work by only converting a small cluster ROS1 to ROS2 at a time
● Ideally, only a small amount of connections to bridge between different clusters

Stage 1 Stage 2 Stage 3



Our Graph



Our Graph : Harder to untangle than a bowl of spaghetti



We Link Big Nodes & We Cannot Lie
● “Nodelet” message passing via shared pointers
● navigation_core_node : 

○ 92 subscribed topics
○ 248 published topics
○ 358 connections : 

■ 262 TCPROS,  96 INTRAPROCESS
● action_monitor :

○ 555 subscribed topics
○ 5 pub topics
○ 657 connections : 

■ 651 TCPROS, 6 INTRAPROCESS
● fmcl_node :

○ 29 subscribed topics
○ 45 published topics
○ 106 connections : 

■ 82 TCPROS, 24 INTRAPROCESS



CPU Usage Matters
Freight100 Power Usage Breakdown
● Stationary : 

○ Computer & Sensors : 40 Watts  
○ Drive Motors : 5 Watts

● Moving : 
○ Computer & Sensors : 55 Watts
○ Drive Motors : 32 Watts

The human        
brain consumes

energy at 10 times 
the rate of the rest 
of the body per 

gram of tissue.



ROS2 Conversion Strategies
1. Everything-at-once
2. Node-by-node  :  Cannot break graph in order to bridge fewer topics
3. Topic-by-topic



ROS1 ROS2

ROS2 Conversion Strategies
1. Everything-at-once
2. Node-by-node 
3. Topic-by-topic : Using combined ROS1      ROS2 nodes



Ideal Mixed Node ROS1 -> ROS2 conversion
● Pick a ROS1 topic
● Convert all nodes publishing / subscribing to that topic to use ROS2 instead 
● No extra overhead!!
● Easy incremental progress

/cmd_vel

/base_scan

/cmd_vel

/base_scan



Running both ROS1 and ROS2 in the same process
ros1_bridge already does this!!

// ROS 1 asynchronous spinner
ros::AsyncSpinner async_spinner(1);
async_spinner.start();

// ROS 2 spinning loop
rclcpp::executors::SingleThreadedExecutor executor;
while (ros1_node.ok() && rclcpp::ok()) {

executor.spin_node_once(ros2_node);
}



We are doing this in a non-standard way
● Using Bazel for a build system
● Using Flow library instead of ROS pub/sub directly

serialize
ROS1

TCP
UDP
/TCP

deserialize
ROS1

Flow Node“pure”
ROS1 node

“pure”
ROS2 node

serialize
ROS1

deserialize
ROS1

serialize
ROS2

deserialize
ROS2

serialize
ROS2

deserialize
ROS2

Flow
Block



What is Flow?
● Similar to message_filters 

○ deterministic synchronization using message timestamp
● Supports multiple transports 

○ ROS1
○ ROS2
○ Local (any C++ objects that wrapped in std::shared_ptr)

sensor_msgs::LaserScan

odometry_msgs::msg::Odom

shared_ptr<map<string, string>>

sensor_msgs::PointCloud

sensor_msgs::msg:Image

shared_ptr<vector<int>>

Single 
Driving 
Input

Multiple
Follower
Inputs

Multiple
Outputs

https://github.com/ZebraDevs/flow


What a ROS1 -> ROS2 Topic Change looks like in Flow
1. Find-Replace message type for topic that is being converted

a. #include <sensor_msgs/LaserScan.h> → #include <sensor_msgs/msg/LaserScan.hpp>
b. sensor_msgs::LaserScan → sensor_msgs::msg::LaserScan

2. Rebuild

**Flow was designed to 
eventually enable 
ROS1->ROS2 
conversion



ROS2 Conversion Strategies
1. Everything-at-once
2. Node-by-node 
3. Topic-by-topic

○ Very incremental
○ No extra overhead
○ Very easy with Flow



● Convert to ROS2 using Flow
● Can avoid bridge if most other 

Nodes use Flow

It Can’t be THAT easy?

Problem Solution(s)

Legacy nodes that don’t 
use Flow.

● Don’t use ROS2 libraries that use 
class_loader

● Recompile ROS1 with again new 
version of class_loader?

Binary incompatible 
libraries (ie 
class_loader)

● See next slide…ROS2 bag format changed 



ROS2 Messages in ROS1 Bags
● For now, continue using ROS1 bag format
● Requires a ShapeShifter message with serialized ROS1 data
● Subscribing to a “generic” ROS2 topic –> type is not known at compile time
● PR for ros1_bridge to provide runtime conversion for generic types
● Some of the overhead of using ros1_bridge

deserialize
ROS2

ActionMonitor

serialize
ROS1

TCP

ROS1 node

ROS1
Bag

rclcpp 
Serialized
Message

topic_tools 
Shape
Shifter

serialize
ROS2

ROS2 node

UDP
Directly Serialize a 
ROS2 Msg into a

ROS1 Stream

https://github.com/ros2/ros1_bridge/pull/377


ROS2 
Conversion 

Utility

1->2

Bagging :  Longer Term
Record dual bags at once
● ROS1 topics -> ROS1 bag
● ROS2 topics -> ROS2 bag

Robot 
Stack

ActionMonitor

ROS1
Bag

ROS2

ROS1

ROS2
Bag

Create utility to use dual bags
● Convert to ROS1 for legacy tools
● Convert to ROS2 for new tools

ROS1
Bag

ROS2
Bag

ROS1 
Conversion 

Utility

2->1

PRODUCTION DEV / TEST

Legacy 
Tools

Newly
Created 

Tools

Transition tools 
incrementally



Summary
● Using combined ROS1/ROS2 nodes

○ Incremental conversion with no overhead
○ Use Flow and Bazel to create these combined nodes

● Initially continue using ROS1 bag format
○ Later use dual bags to provide a transition path for dev tooling

● Improvements to ros1_bridge 
○ Direct serialization of ROS2 messages to ROS1 streams
○ Conversion of generic ROS2 SerializedMessage to ROS1 

ShapeShifter 



One Last Thing …

Fetch / Zebra is Hiring!

Visit our booth for more details.



THANK YOU



Links
● ros1_bridge PR to support generic message conversion
● ros1_bridge PR to serialize/deserialize ROS2 messages into ROS1 

streams
● ros_drake : ROS2 + Bazel
● Flow : C++14, Header-only library for multi-stream data synchronization 

https://github.com/ros2/ros1_bridge/pull/377
https://github.com/ros2/ros1_bridge/pull/381
https://github.com/RobotLocomotion/drake-ros/tree/develop
https://github.com/ZebraDevs/flow

	Slide Number 1
	Our System
	ROS2 Conversion Strategies
	For Us : All-at-once Conversion
	ROS2 Conversion Strategies
	ROS2 Conversion Strategies
	Node-by-node Conversion + ros1_bridge
	ros1_bridge : Overhead
	ros1_bridge : Latency and CPU Usage**
	Optimization : Write ROS2 Msgs directly to ROS1 Stream
	Ideal Node Graph (for bridged conversion to ROS2) 
	Our Graph
	Our Graph : Harder to untangle than a bowl of spaghetti
	We Link Big Nodes & We Cannot Lie
	CPU Usage Matters
	ROS2 Conversion Strategies
	ROS2 Conversion Strategies
	Ideal Mixed Node ROS1 -> ROS2 conversion
	Running both ROS1 and ROS2 in the same process
	We are doing this in a non-standard way
	What is Flow?
	What a ROS1 -> ROS2 Topic Change looks like in Flow
	ROS2 Conversion Strategies
	It Can’t be THAT easy?
	ROS2 Messages in ROS1 Bags
	Bagging :  Longer Term
	Summary
	One Last Thing …
	Slide Number 29
	Links

