
ROSCon 2022: Native Rust

Contents
● Background
● Why Rust?
● Alternatives for using

Rust with ROS2
● RustDDS
● ros2-client
● Flexbot
● Code & Examples
● Summary

In business for 23 years
~120 employees
Turnover ~ 9 M€
Owned by personnel

Machines and Automation
Healthcare and Social Services

Public Sector IT

Digitalization Engineering

Why Rust is important for robot
programming

Rust is so far the best candidate for replacing C and C++ in systems programming.

Produces low-overhead bare-metal code like C++
– with safety guarantees of a high-level language:
● Memory safety
● Data race safety*
● Reasonably easy to learn for C++ programmers
● Algebraic type system

No historical baggage of C/C++:
● Undefined or implementation-defined behaviour
● Large bag of pitfalls to learn

* Yes, really! The compiler can statically detect data races!
(But deadlocks are still on the programmer’s responsibility.)

How does Rust achieve that?
• Ownership-based memory handling

• Handles a mix of stack and heap allocations
• Stack allocation beats even the fastest malloc library

• Statically checked lifetimes → zero overhead
• Also checks safe memory sharing between threads

• unsafe constructs
• Clearly separates dangerous constructs, e.g. raw pointer handling, from safe code.
• unsafe is needed for very low-level data structure implementations and FFI, but that is

a very small fraction of code lines.

• Compiler is built on LLVM
• Very advanced back-ends for x86(-64), ARM, and others

Programming ROS2 with Rust

ROS2 client in Rust: Alternatives
Name Author URL Notes

ros2-rust Multiple
contributors

https://github.com/ros2-rust/ros2_rust Official Rust binding to rcl

ros2-client
/ RustDDS

Atostek Oy /
Juhana Helovuo
and others

https://github.com/jhelovuo/ros2-client Native Rust implementation of ROS2 client library
- and DDS!

r2r Martin Dahl
and others

https://github.com/sequenceplanner/r2r Binding to rcl.
Rust API uses async functions.

rclrust Yuma Hiramatsu https://github.com/rclrust/rclrust Uses Rust macros(!) to translate IDL to Rust types.

rus2 Marshal SHI https://github.com/marshalshi/rus2 Inactive since Sep 2020

rosrust Adnan Ademovic
and others

https://github.com/adnanademovic ROS 1
Inactive since Aug 2020

RustDDS
● Native Rust implementation of DDS API

and RTPS network protocol from scratch
● Apache 2.0 -licensed open source:

https://github.com/jhelovuo/RustDDS
● Features

○ Discovery (peer autodetection)
○ Non-blocking I/O
○ “Zero-copy” receive path

■ Single-copy transmit path
○ Serialize/deserialize directly to Rust

objects
○ Reliable and Best Effort QoS
○ History QoS
○ Fragmentation (large objects)

DataReader DataWriter

ROS Client Library

Reader Writer

UDP/IP

Driver

DDS Cache

ROS Node

Network
Adapter

Subscription Publisher

Hardware

OS

RTPS
implementation

DDS API

Application

ROS2
Client
Library

syscall

rcl / rclcpp / rclpy

eProsima /
Cyclone / RTI DDS library

ros2-client

RustDDS

https://github.com/jhelovuo/RustDDS

RustDDS
$ c a r go r un - - e xa mpl e =s ha pe s _de mo
- - - P - t Ci r c l e - r - c GREEN - S

5 Hz

20 Hz

#[derive(Serialize, Deserialize, Clone)]

struct Shape {
color: String,
x: i32,
y: i32,
shapesize: i32,

}

impl Keyed for Shape {
type K = String;
fn key(&self) -> String {
self.color.clone()

}

}

...

let domain_participant = DomainParticipant::new(domain_id)

.unwrap_or_else(|e|

panic!("DomainParticipant construction failed: {:?}", e));

Code: Using RustDDS

poll.poll(&mut events, Some(loop_delay)).unwrap();

for event in &events {

match event.token() {

// ...

READER_READY => {

// ...

match reader.take_next_sample() {

Ok(Some(s)) =>

match s.into_value() {

Ok(sample) => println!("{:10.10} {:10.10} {:3.3} {:3.3} [{}]",

topic.name(), sample.color, sample.x, sample.y, sample.shapesize,),

Err(key) => println!("Disposed key {:?}", key),

},

Ok(None) => break, // no more data

Err(e) => println!("DataReader error {:?}", e),

}

}

Code: Using RustDDS

Code has been edited for presentability. Please see sources at GitHub for full version.

ros2-client
● ros2 - client is a Rust crate

that implements something
similar to rcl and (parts of)
rclcpp/rclpy.
○ Topics
○ Services

● Runs on top of RustDDS.
● Does not yet have an event loop.

Nodes must use .poll() from
the Metal I/O library to
implement event loop.

DataReader DataWriter

ROS Client Library

Reader Writer

UDP/IP

Driver

DDS Cache

ROS Node

Network
Adapter

Subscription Publisher

Hardware

OS

RTPS
implementation

DDS API

Application

ROS2
Client
Library

syscall

rcl/rclcpp/rclpy

eProsima /
Cyclone / RTI DDS library

ros2-client

RustDDS

let mut node = create_node();
let topic_qos = create_qos();
let chatter_topic = node
.create_topic("/chatter",

String::from("std_msgs::msg::dds_::String_"),
&topic_qos,)

.unwrap();
let mut chatter_subscription = node

.create_subscription::<String>(&chatter_topic, None)

.unwrap();

// ... initialize polling here ...

Code: Using ros2-client

Code has been edited for presentability. Please see sources at GitHub for full version.

loop {

poll.poll(&mut events, None)

.unwrap();

for event in events.iter() {

match event.token() {

Token(1) => match chatter_subscription.take() {

Ok(Some((message, _messafe_info))) => {

let l = message.len();

println!("message len={} : {:?}", l, &message[..min(l,50)]);

}

Ok(None) => println!("No message?!"),

Err(e) => {

println!(">>> error with response handling, e: {:?}", e)

}

},

_ => println!(">>> Unknown poll token {:?}", event.token()),

} // match

} // for

} // loop

The Flexbot Framework
● Robot programming framework developed at Atostek since 2019.
● Not (yet) open source
● Main idea is to construct software from nodes and communication channels

just like in ROS.
● We implemented ROS2-compatibility in 2020-2021 → Flexbot can be now

seen as an extension to ROS2.
○ Supports programming nodes in Rust.
○ Whole software is described by a machine-readable data flow specification.
○ Boilerplate code is generated from the specification
○ Closely coupled nodes can simplify inter-node communication
○ → Enables fine-grained data flow programming with tens or hundreds of nodes.
○ → Simple individual nodes → Improved reusability

ROS2: high-level view

Node Nodetopic

topic

ROS2 and Flexbot together

topic

topic

Write code for
algorithms

generate
import

Write spec

Flexbot Example: Pulu robot path tracking

• Vehicle mechanics & electrics: Pulu Robotics, prototype
• Main controller: Raspberry Pi 4
• Camera navigation: 2 x (RPi3 + Raspberry Camera module)
• Software: ”atosbot” application using Flexbot framework

• Rviz2 - ROS2 Foxy, pre-built binary on Ubuntu Linux

Flexbot Example: Pulu robot path tracking
Full Data flow Graph Simplified

ROS2 topics

Automated Forklift
Mitsubishi Logisnext Europe
Demo Center, Järvenpää, Finland
Manual teleoperation test,
using software from multiple vendors.

ART Forklift
vehicle

Mitsubishi Logisnext Europe

CANRosAdapter
using Flexbot/RustDDS

Atostek Oy

PLC

Navitrol
robot software stack

Navitec Oy

CAN

ROS2 Topics

Summary
● Rust is important for robots

○ No-overhead real-time systems programming capability like C/C++
○ Very good memory safety, no garbage collection required
○ Type system more straightforward than C++ classes, but still powerful

● RustDDS
○ Open-source native Rust DDS/RTPS implementation from Atostek

● ros2-client
○ ROS2 topics and services on top of RustDDS
○ Enables ROS2 nodes in native Rust

● Flexbot
○ Framework to produce ROS2-compatible dataflow software
○ Code generation from machine readable specification

■ Local-only data channels use very lightweight communication
■ Enables scaling to large number of nodes.

	ROSCon 2022: Native Rust
	Contents
	Slide Number 3
	Slide Number 4
	Why Rust is important for robot programming
	How does Rust achieve that?
	Programming ROS2 with Rust
	ROS2 client in Rust: Alternatives
	RustDDS
	RustDDS
	Code: Using RustDDS
	Code: Using RustDDS
	ros2-client
	Code: Using ros2-client
	The Flexbot Framework
	ROS2: high-level view
	ROS2 and Flexbot together
	Flexbot Example: Pulu robot path tracking
	Flexbot Example: Pulu robot path tracking
	Automated Forklift
	Summary

