"ATOSTEK

ROSCon 2022: Native Rust

Contents

Background

Why Rust?
Alternatives for using
Rust with ROS2

RustDDS
ros2-client
Flexbot

Code & Examples
Summary

CATOSTEK

Digitalization Engineering

Machines and Automation
Healthcare and Social Services
Public Sector IT

e —

“ATOSTEK

Why Rust is important for robot
programming
Rust is so far the best candidate for replacing C and C++ in systems programming.

Produces low-overhead bare-metal code like C++
— with safety guarantees of a high-level language:

e Memory safety

e Data race safety”

e Reasonably easy to learn for C++ programmers
e Algebraic type system

No historical baggage of C/C++:

e Undefined or implementation-defined behaviour
e Large bag of pitfalls to learn

CATOSTEK

* Yes, really! The compiler can statically detect data races!
(But deadlocks are still on the programmer’s responsibility.)

How does Rust achieve that?

« Ownership-based memory handling

 Handles a mix of stack and heap allocations
Stack allocation beats even the fastest malloc library

« Statically checked lifetimes — zero overhead
« Also checks safe memory sharing between threads

« unsafe constructs
« Clearly separates dangerous constructs, e.g. raw pointer handling, from safe code.
« unsafe is needed for very low-level data structure implementations and FFlI, but that is
a very small fraction of code lines.

« Compiler is built on LLVM
« Very advanced back-ends for x86(-64), ARM, and others

CATOSTEK

ROS2 client in Rust: Alternatives

Author

rosZ-rust Multiple https://github.com/ros2-rust/ros2_rust Official Rust binding to rcl

contributors
ros2-client | Atostek Oy / https://github.com/jhelovuo/ros2-client Native Rust implementation of ROS2 client library
/ RustDDS | Juhana Helovuo - and DDS!

and others
r2r Martin Dahl https://github.com/sequenceplanner/r2r Binding to rcl.

and others Rust APl uses async functions.
rclrust Yuma Hiramatsu | httes-/github.com/rclrust/rclrust Uses Rust macros(!) to translate IDL to Rust types.
rosrust Adnan Ademovic https://github.com/adnanademovic ROS 1

and others

Inactive since Aug 2020

RustDDS

e Native Rust implementation of DDS API

and RTPS network protocol from scratch

e Apache 2.0 -licensed open source:
https://github.com/jhelovuo/RustDDS

e Features

©)
©)
©)

Discovery (peer autodetection)
Non-blocking 1/0
“Zero-copy” receive path

m Single-copy transmit path
Serialize/deserialize directly to Rust
objects
Reliable and Best Effort QoS
History QoS
Fragmentation (large objects)

CATOSTEK

rcl / rclepp / relpy
ros2-client

eProsima /
Cyclone / RTI

RustDDS

ROS Node

} Application

A
P

p
n Publisher
J G

| rROS2
4 Client

RS Client Library

Library

DDS API

% Subscript

|
|
DataReadar] [Dat?J\/riter
/

\

G

Yoo

| DDS library

J

e [\Wmer

RTPS
implementation

\.

A \

Y

\ N
P
J

syscall

OS

A\

4N

<
ork
apter
J

Hardware

https://github.com/jhelovuo/RustDDS

RustDDS

$ cargo run --exanple=shapes deno
-- -P -t Circle -r -c¢ GREEN -S

Circle RED 136 183 [30]
Circle RED 134 184 [30]
Circle RED 182 185 [30]
Circle GREEN 127 211 [21]
Circle RED 130 186 [30]
Circle RED 178 187 [30]
Circle RED 176 188 [30]
Circle RED 174 189 [30]
Circle GREEN 135 187 [21]
Circle RED 172 180 [30]
Circle RED 170 181 [30]
Circle RED 168 182 [30]
Circle RED 166 183 [30]
Circle GEEEN 151 183 [21]
Circle RED le4 1594 [30]
Circle RED 162 185 [30]
Circle RED 160 196 [30]
Circle RED 158 187 [30]
Circle GEREEN 163 139% [21]
Circle RED 156 198 [30]
Circle RED 154 18% [30]
Circle RED 152 200 [30]

“ATOSTEK

Code: Using RustDDS

#[derive (Serialize, Deserialize, Clone)]

struct Shape {
color: String,
x: i32,
y: i32,
shapesize: 132,

}

impl Keyed for Shape {
type K = String;
fn key(&self) -> String {
self.color.clone()

}

let domain participant = DomainParticipant::new(domain id)

.unwrap or else(|e]

panic! ("DomainParticipant construction failed: {:2}", e));

“ATOSTEK

Code: Using RustDDS

poll.poll(&mut events, Some(loop delay)) .unwrap();
for event in &events {
match event.token() {
//
READER READY => {
//
match reader.take next sample() {
Ok (Some (s)) =>
match s.into value() {
Ok (sample) => println!("{:10.10} {:10.10} {:3.3} {:3.3} [{}1",
topic.name(), sample.color, sample.x, sample.y, sample.shapesize,),
Err(key) => println! ("Disposed key {:?2}", key),
},
Ok (None) => break, // no more data

Err(e) => println! ("DataReader error {:?}", e),

“ATOSTEK

Code has been edited for presentability. Please see sources at GitHub for full version.

rosZ-client

[ROS Node } Application
e ros2 -client is a Rust crate A
that. Implements something relirdloppirclpy Subscripon | | Publisher | ROS2
similar to rcl and (partS Of) ros2-client RS Client Library Library
rclcpp/relpy. | — DDS API
o Topics [DataReada&r] [Dat?J\/riter
o Services eProsima / r \ / : ,
e Runs on top of RustDDS. Cyclone / RT! 933 Ca?e/ DDS library
e Does not yet have an event loop. rustops R TPS
Nodes must use pO”() from Reade\] [\ e] implementation
the Metal 1/O library to \ syscall
Implement event loop. \ B‘{P) o

N\
4N

CATOSTEK A%er Hardware

Code: Using ros2-client

let mut node = create node(); loop {
let topic_gos = create_qgos(); poll.poll (&mut events, None)
let chatter topic = node .unwrap () ;
.create topic("/chatter", for event in events.iter () {
String::from("std msgs::msg::dds_ ::String "), match event.token() {
&topic gos .
P (;q r) Token (1) => match chatter subscription.take() {
.unwrap () ; _
. . k fe inf =>
let mut chatter subscription = node Ok (Some ((message, _messafte_info))) {
.create subscription::<String>(&chatter topic, None) let 1 = message.len();
.unwrap () ; println! ("message len={} : {:2}", 1, &messagel[..min(1,50)1]);
S . }
// ... initialize polling here ... Ok (None) => println! ("No message?!"),

Err(e) => {
println! (">>> error with response handling, e: {:2}", e)
}
b,

_ => println! (">>> Unknown poll token {:?}", event.token()),
} // match
} // for
} // loop

“ATOSTEK

Code has been edited for presentability. Please see sources at GitHub for full version.

The Flexbot Framework

e Robot programming framework developed at Atostek since 2019.

e Not (yet) open source

e Main idea is to construct software from nodes and communication channels
just like in ROS.

e \We implemented ROS2-compatibility in 2020-2021 — Flexbot can be now

seen as an extension to ROS2.

Supports programming nodes in Rust.

Whole software is described by a machine-readable data flow specification.
Boilerplate code is generated from the specification

Closely coupled nodes can simplify inter-node communication

— Enables fine-grained data flow programming with tens or hundreds of nodes.
— Simple individual nodes — Improved reusability

O O O O O O

CATOSTEK

ROS2: high-level view

a) &)

Node —topic Node

“ATOSTEK

| ROS2 and Flexbot together

\/@ import
generate / topic \ Q
- ™ = =

T)

PR :Ii)

~—————

\ / \ /

Write code for
algorithms

“ATOSTEK

Flexbot Example: Pulu robot path tracking

Vehicle mechanics & electrics: Pulu Robotics, prototype
Main controller: Raspberry Pi 4

Camera navigation: 2 x (RPi3 + Raspberry Camera module)
Software: "atosbot” application using Flexbot framework

CATOSTEK

Rviz2 - ROS2 Foxy, pre-built binary on Ubuntu Linux

Flexbot Example: Pulu robot path tracking

Full Data flow Graph

matiAdapter

BetionHandler

rrakenbot_driver

“ATOSTEK

Simplified

R

oystick

cycleTimer

e

e

frankenbot_driver|

routeProcessor

|—M#—~h—-—u—;~v—

L

N ROS2 topics

SR S5 0 ST St e

e fuss - marvreres
avigation
manualController *
tracking
A |
l S—
auto_manual_mux
S —

motionController

Mitsubishi Logisnext Europe
Demo Center, Jarvenpaa, Finland

Au to m ate d F O rkl Ift E/Isai]:;as,lotf?\llx?;rze;g[rignrr:t?ﬁ:p;le vendors.

robot software stack
Navitec Oy

ROS2 Topics

CANRosAdapter
using Flexbot/RustDDS
Atostek Oy

PLC

ART Forklift
vehicle
Mitsubishi Logisnext Europe

“ATOSTEK

Summary

e Rust is important for robots
o No-overhead real-time systems programming capability like C/C++
o Very good memory safety, no garbage collection required
o Type system more straightforward than C++ classes, but still powerful

e RustDDS

o Open-source native Rust DDS/RTPS implementation from Atostek
e ros2-client

o ROS2 topics and services on top of RustDDS

o Enables ROS2 nodes in native Rust
e Flexbot

o Framework to produce ROS2-compatible dataflow software

o Code generation from machine readable specification
m Local-only data channels use very lightweight communication
m Enables scaling to large number of nodes.

CATOSTEK

	ROSCon 2022: Native Rust
	Contents
	Slide Number 3
	Slide Number 4
	Why Rust is important for robot programming
	How does Rust achieve that?
	Programming ROS2 with Rust
	ROS2 client in Rust: Alternatives
	RustDDS
	RustDDS
	Code: Using RustDDS
	Code: Using RustDDS
	ros2-client
	Code: Using ros2-client
	The Flexbot Framework
	ROS2: high-level view
	ROS2 and Flexbot together
	Flexbot Example: Pulu robot path tracking
	Flexbot Example: Pulu robot path tracking
	Automated Forklift
	Summary

