
On Use of Nav2

Smac Planners

Steve Macenski, Samsung Research America

Steve Macenski

Senior Technical Lead - Samsung Research

● Your Friendly Neighborhood Navigator!

● ROS Technical Steering Committee Member

● Navigation Working Group & Project Lead

● Developed 50+ ROS & ROS 2 Packages

NASA Goddard (2015 - 2017) Simbe Robotics (2017 - 2019) Samsung Research America (2019 - Present)

Overview

Background Nav2 Smac Planners In The Wild

Background - Path Planning

“How Do I Get There?”

Finding a route through an environment
● Could be feasible, but not definitionally
● Could be a trajectory, but not definitionally

Paired with a Local Trajectory Planner
● Costly traj. planning locally
● Path / route planning globally

When is it not needed?
● Predefined routes or ‘teach and repeat’
● Simplistic environments / following tasks

Background - Path Planning

Major Classes of Path Planners

Search
● Dijkstra’s, A*, State Lattice, SBPL

Sampling
● RRT & Variants, OMPL

Optimization and Smoothing
● Gradient Descent on Objective Functions

Background - Path Planning

Major Classes of Path Planners

Search
● Dijkstra’s, A*, State Lattice, SBPL

Sampling
● RRT & Variants, OMPL

Optimization and Smoothing
● Gradient Descent on Objective Functions

* Admittedly, this is a bit of a strawman example, but we only have 15 min!

Background - Path Planning

Major Classes of Path Planners

Search
● Dijkstra’s, A*, State Lattice, SBPL

Sampling
● RRT & Variants, OMPL

Optimization and Smoothing
● Gradient Descent on Objective Functions

Background - ROS Planning

What Options Did We Have in ROS (1)?

Navigation Stack
● NavFn
● Global Planner

The Community
● DLux Global Planner
● Voronoi Planner
● SBPL Lattice Planner

→ Plenty of circular diff and omni options

Background - ROS Planning

What Options Did We Have in ROS (1)?

Navigation Stack
● NavFn
● Global Planner

The Community
● DLux Global Planner
● Voronoi Planner
● SBPL Lattice Planner

→ Plenty of circular diff and omni options

No teach & repeat or pre-defined route following?
(though not the topic of today’s talk)

Background - ROS Planning

What Options Did We Have in ROS (1)?

Navigation Stack
● NavFn
● Global Planner

The Community
● DLux Global Planner
● Voronoi Planner
● SBPL Lattice Planner

→ Plenty of circular diff and omni options

No teach & repeat or pre-defined route following?
(though not the topic of today’s talk)

Where’s the support for non-circular robots?

Background - ROS Planning

What Options Did We Have in ROS (1)?

Navigation Stack
● NavFn
● Global Planner

The Community
● DLux Global Planner
● Voronoi Planner
● SBPL Lattice Planner

→ Plenty of circular diff and omni options

No teach & repeat or pre-defined route following?
(though not the topic of today’s talk)

Where’s the support for non-circular robots?

What about Ackermann or Legged robots?

Overview

Background Nav2 Smac Planners In The Wild

Smac Planner - Overview

Cost-Aware A*-Based Planning Framework

Feature-Packed Templated A* Search Algorithm

Multiple Node Types, Creating 3 Unique Planners
 More can be added!

Enables Non-Circular, Legged, Ackermann, Diff & Omni

Optimized for High Performance; Drop-In Replacement

93% Unit Test Coverage, Used in Production Today
 2D A* Hybrid-A* State Lattice

SmacAStar<NodeT>

while not queue.empty()
 node = getNextNode()

 if node->wasVisited()
 continue
 node->visited()

 node = tryAnalyticExpansion(node)

 if isGoal(node) or withinApproachTol(node)
 return backtrace(node)

 for neighbor in node->getNeighbors()
 g = node->getAccumulatedCost() + node->getTraversalCost()
 if g < neighbor->getAccumulatedCost()
 neighbor->setAccumulatedCost(g)
 neighbor->parent = node
 addNode(g + neighbor->getHeuristicCost(), neighbor)

NodeT
getAccumulate

dCost()
setAccumulatedCost(...)

visited()
wasVisited()

getTraversalCost(...)
getHeuristicCost(...)
getNeighbors(...)
 ...

Smac Planner - Need

Support for New / Modern Robot Types

Alternative for Circular or Small Robots (2D)

Non-Circular or Large Diff / Omni (Lattice / Hybrid)

● Where a circular assumption is not possible

Legged or Ackermann (Lattice / Hybrid)

● Curvature constrained, kinematically feasible
● Arbitrary models for bespoke systems

Nav2 Supports All Major Robot Types

Global
Planner

DLux
Planner NavFn Theta* Smac

2D
Smac
Hybrid

Smac
Lattice

Circular
Differential ✓ ✓ ✓ ✓ ✓ ✓

Non-Circular
Differential ✓ ✓

Circular
Omni ✓ ✓ ✓ ✓ ✓

Non-Circular
Omni ✓

Ackermann
(All) ✓ ✓

Legged (All) ✓ ✓

Available in ROS

Planning Algorithm’s Best Usage Guide

 Available in ROS 2

Smac Planner - Some Important Technical Deets

Cost-Aware Obstacle Heuristic
● Steers towards solution, away from obstacles
● Uses cost, not just binary obstacles
● Respect user behavioral constraints
● Higher quality path before smoothing

Search Penalty Functions
● Reverse, Change Direction, Non-Straight, Cost

Analytic Expansions
● Finds exact & feasible paths to the goal

Smac Planner - 2D A*

Circular Diff / Omni

Performance: 20 - 200 ms

Simple Grid-A* with Smoothing

Point-Cost Collision Checking

Moore Search Model

L2 Distance Heuristic

Consistent Behavior in Heterogeneous Fleet

H
yb

ri
d-

A
*

2D
-A

*
S

ta
te

La

tt
ic

e

Smac Planner - Hybrid-A*

Ackermann, Legged

Performance: 20 - 60 ms

SE2 Pose Collision Checking

Kinematically Feasible

Dubins or Reed-Shepp Search Model
● Dynamically adjusted
● + Analytic Expansions

Heuristic is the Maximum of:
● Precomputed Kine-Distance Window
● Cost-Aware Obstacle Heuristic

H
yb

ri
d

-A
*

2D
-A

*
S

ta
te

La

tt
ic

e

http://www.youtube.com/watch?v=vaxNA98j0LQ

Smac Planner - State Lattice

Non-Circular Diff / Omni, Arbitrary

Performance: 30 - 65 ms

SE2 Pose Collision Checking

Kinematically Feasible

Minimum Control Set Search Model
● Generated offline
● + Analytic Expansions

Heuristic is the Maximum of:
● Precomputed Kine-Distance Window
● Cost-Aware Obstacle Heuristic

Performance: XYZ - ABC (ms)

Collision Checking: SE2 footprint or point cost
● Useful for circular and non-circular robots

Kinematically feasible plans

H
yb

ri
d-

A
*

2D
-A

*
S

ta
te

La

tt
ic

e

Smac Planner - State Lattice - Generator

Minimum Control Set Generator

Creates set of primitives to describe motion model
● In a structured & principled lattice pattern
● Primitives smoothly transition from one to another

For each cell + heading in a wavefront:
 → Create a curvature minimizing trajectory
 → Check if a similar traj. can be constructed from set
 → If not, add it to the set
Repeat until a wavefront adds no new primitives

2D
-A

*
S

ta
te

La

tt
ic

e
H

yb
ri

d-
A

*

0.5m turning radius

1.0m turning radius

Overview

Background Nav2 Smac Planners In The Wild

Configuration

See Nav2 Docs For Full List

Create Potential Fields

Cache Obstacle Heuristic
● For consecutive replanning in static spaces
● Less than 10 ms replans typical

Cost Penalty
● Cost: Penalizes higher cost areas*
● Reverse: Penalizes going in reverse
● Change: Penalizes not continuing last action
● Non-Straight: Penalizes non-straight actions
● Rotation: Penalizes pure rotations (Lattice only)

* Shared with cost-aware obstacle heuristic Variable Cost Penalties - 2D-A*

In The Wild

Steve Macenski
Senior Technical Lead - Samsung Research
s.macenski@samsung.com
stevenmacenski@gmail.com

Repository, Documentation, and Issue Tracker:

https://github.com/ros-planning/navigation2

https://discourse.ros.org/c/navigation

https://navigation.ros.org

Interested in Getting Involved?
Join our Slack: https://bit.ly/3ssxidP

From the Desk

Configuration

See Nav2 Docs For Full List

Termination Conditions
● Max Planning Time / Iterations
● Planning Tolerance / Iterations on Approach

Downsample Costmaps

Analytic Expansion
● Ratio
● Maximum Length

Angular Quantizations

Smac Planner - Features

Optimized
● Carefully selected data structures
● Tons of precompution and caching

Dynamic Graph Creation
● Constructs graph on expansion
● No run-time lookups
● NEW ~25% speed-up with Robin Hood Hashing

Costmap Downsampling

Smoothing Options
● Basic gradient descent
● Collision & curvature constrained

Approximate Paths W/In Tolerance

Collision Checking
● Checks if center cost is less than min possibly inscribed

○ If not, checks full SE2 footprint
○ If circular, checks center inflated costs

Analytic Expansions
● Uses motion model to find exact path to goal
● Computed more frequently closer to the goal
● Significantly speeds up on approach to goal

