
The ROS Build Farm and You!
How the packages that you release become

binary packages in the ROS repositories



whoami

Steven! Ragnarök

ROS Infrastructure Team

discourse.ros.org/u/nuclearsandwich

github.com/nuclearsandwich

twitter.com/nuclearsandwich

steven@openrobotics.org



Creating ROS 2 Packages
1 ros2 pkg create …

2 catkin_generate_changelog

3 catkin_prepare_release

4 Add a source repository entry in ros/rosdistro

5 Create a ros2-gbp release repository

6 bloom-release …

7 WAAAAAAAAAAAAAAAAAAIT

8 apt-get install ros-rolling-yourpackage

Steps 1, 4, and 5 are only required for initial setup.



What is "the build farm"?
A cluster of machines which communicate with a

central Jenkins build server to perform various build and

automation tasks for the ROS project and community.

There are actually two∗ of them.

build.ros.org build.ros2.org

ROS Noetic ROS 2 Rolling

ROS Melodic ROS 2 Humble

ROS Lunar ROS 2 Galactic

ROS Kinetic ROS 2 Foxy

∗ci.ros2.org is specialized and not a usual build farm



What is "the build farm"?

There are several different machine roles in the cluster:

Exactly one Jenkins host.

Exactly one Repository (repo) host.

At least one Agent host per architecture.

Optionally one or more CI Agent hosts.



What does the ROS build farm do?
Runs per repository CI

Tests pull requests and updates to the source branch.

Builds documentation

API and long form documentation for configured

packages.

Builds packages for ROS repositories

Source packages and binary, packages.

Performs distribution management automation

Synchronize packages between repositories and update

repository status pages.



…and it looks good doing it!

The entire build farm process is…

• publicly accessible to the entire ROS community

• run using open source software

• using public configuration information ∗

• running on hosts provisioned using open source

infrastrucure as code

∗excepting secrets like GPG private keys



ROS build farm open source projects

github.com /

ros-infrastructure / ros_buildfarm

ros_buildfarm_config

reprepro-updater

cookbook-ros-buildfarm

ros2 / ros_buildfarm_config

ros / rosdistro



What are the ROS Repositories?

Package repositories hosted on packages.ros.org and

the ROS build farms.

APT repositories for Debian and Ubuntu

RPM repositories for Enterprise Linux, and perhaps

someday Fedora and/or OpenSUSE

ROS and ROS 2 have separate repositories although

there is no RPM repository for ROS 1.



What are the ROS Repositories?

Package repositories hosted on packages.ros.org and

the ROS build farms.

Public Internal

ROS (1) ros ros-testing ros-building

ROS 2 ros2 ros2-testing ros2-building

building repositories are not publicly mirrored on packages.ros.org.



Builld farm repository "flow"

ros_bootstrap repository

Entry point for infrastructure packages and third party

packages

building repository

Staging ground for packages being rebuilt

testing repository

Repositories for use in CI and manual testing

main repository

Default installation path for supported platforms







Don’t Panic

We’re going to get through this together



One step at a time…

1 Prepare the source release

2 Let the build farm do its thing

3 Wait for a sync

4 Install your package



1. Preparing the source release



1. Preparing the source release

There are many infrastructure tools to help with this:

1 catkin_generate_changelog to help create and

update changelogs.

2 catkin_prepare_release to update version info, tag,

and push the release

3 bloom-release to update the release repository data

for new releases.



1. Preparing the source release

ros/rosdistro release PRs opened automatically by Bloom.



2. The build farm's thing



2. The build farm's thing

Jenkins release management jobs

1 rosdistro_cache jobs run every five minutes polling

for changes in ros/rosdistro

2 reconfigure jobs for changed distributions are

triggered by rosdistro cache

3 every 15 minutes trigger jobs start packaging jobs

for changed packages



rosdistro cache
gzip compressed yaml document containing

distribution_file a copy of the distribution file from ros/rosdistro

release_repo_package_xmls package.xml contents from the

currently released package version

source_repo_package_xmls empty (fetching source package.xml is

tricky)

name the short name of this rosdistro

type, version REP-141 format information



rosdistro-cache jobs

Examples rolling_rosdistro-cache, humble_rosdistro-cache

• Generates a new rosdistro cache file and uploads it to the

repository host.

• Runs on five minute intervals.

• Polls for distribution.yaml changes via HTTPS. Changes

sometimes lag due to CDN caching.

• Triggers reconfigure jobs for updated packages.



release reconfigure jobs

Examples Rrel_reconfigure-jobs, Rrel_rhel_reconfigure-jobs,

Rrel_ujv8_reconfigure-jobs

• One job per release build file in ros_buildfarm_config

• Uses release build config and ros_buildfarm templates to

generate a sourcepkg and binarypkg job for each package

• Runs when triggered by rosdistro cache to update changed

packages

• Runs every 24 hours to keep job configurations up to date



release trigger jobs

Examples Rrel_trigger-jobs, Rrel_rhel_trigger-jobs, Rrel_ujv8_trigger-jobs

• One job per release build file in ros_buildfarm_config

• Compares packages in the building repository with expected packages
based on rosdistro cache and triggers sourcepkg and/or binarypkg jobs to
implement changes

Job parameters:

missing only – triggers jobs for packages not present in repositories.

source only – triggers jobs for source packages only; useful when source
packages need to be updated before binaries are rebuilt



Packaging jobs



source package jobs
Examples Rsrc_uJ64__rclcpp__ubuntu_jammy_source

• Fetch package sources with platform-specific metadata from ros2-gbp
repository and create platform source package (.dsc for Debian/Ubuntu,
(.srpm for Fedora/RHEL) and upload it to the building repository.

• Does not use ROS tools like colcon, rosdep, bloom. By this time all
package information has been rendered into distribution-specific formats.

• A successful build will trigger binary package builds for all binary
packages generated from the created source package.

• Old binary packages are removed when a new source package is
imported.



binary package jobs

Examples Rbin_uJ64__rclcpp__ubuntu_jammy_amd64__binary

• Fetch the source from the building repository.

• Installs build dependencies.

• Uploads the binary package created to the building repository.

• Does not use ROS tools like colcon, rosdep, bloom. By this time all
package information has been rendered into distribution-specific formats.

• A successful build will complete by importing the newly built binary
package into the building repository and invalidating all package’s
downstream of it.



Package invalidation
• Remove all packages which depend recursively on the newly

rebuilt package.

• Prevents ABI breaks in production.

• Instant feedback for downstream packages when APIs

change.



3. Waiting for a sync



sync to testing jobs

Examples Rrel_sync-packages-to-testing_jammy_amd64,

Rrel_sync-packages-to-testing_rhel_8_x86_64

• Removes all ROS packages from the testing repository which

match the job’s rosdistro, platform version, and architecture,

as well as associated source packages.

• Imports all ROS packages from the building repository which

match the same criteria.



sync to testing jobs

• This way, packages are deleted when there is no longer a

binary job for them.

• All binary and source jobs block the testing jobs so these run

only once during large rebuilds.

• Automated thresholds are set to prevent a bad release from

purging the testing repository.



sync to main jobs

Examples Frel_sync-packages-main,

Hrel_sync-packages-to-main

• Removes all ROS packages from the main

repository which match the job’s rosdistro for each

platform version and architecture combination.

• Only ever run manually by the ROS core team.

There is a separate subordinate Jenkins job for handling RPM repositories





Thanks!



Modes of integration

Distribution model integration

Software collections are curated and integrated through

community effort. The software available is limited but

using all of it together is much more likely to be

mutually compatible.
Examples: Most Linux distributions (Ubuntu 22.04, Fedora 36, etc),

ROS distributions (Noetic, Humble), Gazebo collections (Citadel,

Fortress, Garden), Homebrew.



Modes of integration

Application model integration

Software is aggregated in service of a specific

application from multiple available sources.

Applications may choose to integrate arbitrary desired

versions of software based on need but each application

team must curate their own (often much smaller) set of

dependencies.
Examples: Conda-forge, npm, PyPI, Crates.io/Cargo



Binary packages
Why do we need them?

Alternatives:

Everyone builds from source

’sup Gentoo

Docker / OCI

Currently these use the binary packages under

the hood.

Conda / Spack

These are great on platforms without a

distribution packaging system but…


