
1www.openrobotics.org

Tools and Processes for 
Improving the Certifiability 

of ROS 2
Michael Jeronimo and Geoffrey Biggs

Open Robotics



(ROS-based) Robots 
are everywhere 

on Earth



Robots are also in space



4www.openrobotics.org

Manipulators

Humanoid
robots

Mobility 
systems

Robotic 
spacecraft

Robotic 
landers



5www.openrobotics.org

Increasing amount of software + cost of software development 
= demand for reuse

1970 – joystick 
control

2020 – 2M lines of code



6www.openrobotics.orgwww.openrobotics.org

The Demand for Reuse

The space community is already moving toward 
componentized, reusable, and open 
frameworks for flight software
and mission control

• F' (F Prime)
• core Flight System (cFS)
• Yamcs
• OpenMCT

Also using smaller open source projects 
in flight

• AprilTag (visual fiducial system) used 
on Perseverance



7www.openrobotics.orgwww.openrobotics.org

ROS-based robots have already been to space

2019: Astrobee2014: Robonaut 2



CONFIDENTIAL - Do not duplicate or distribute without written permission from Open Robotics

● ROS used in ground software 
systems

● Gazebo simulation used in 
mission development, 
testing, planning, operator 
training, etc.

● Other open source software
○ cFS/ROS bridge
○ Yamcs
○ OpenMCT

● NASA requires software 
used in flight missions to
be space qualified

NASA VIPER

Prospecting for lunar 
resources in permanently 
shadowed regions of the 
lunar south pole



What we need: A version of ROS for space applications!

A space-certifiable and reusable space robotics framework

● Support certification according to flight software standards, like DO-178C and NASA’s NPR7150.2

● Provide artifacts to allow space flight projects to gain a head start on their certification efforts

That brings the benefits of ROS to space robotics

● Enable rapid development of new robotic capabilities

● Facilitate reuse across missions, reducing development effort and costs

● Open source software, use open community processes



1
0

www.openrobotics.orgwww.openrobotics.org

What is Space ROS?
Space ROS 2022

Foundation
● Builds
● Releases
● Continuous Integration
● Maintenance
● Package subset
● Docker images
● Embedded target(s)

Tools and Processes
● Requirements tools and 

processes for traceability 
and analysis

● Code analysis tools with 
SARIF output

● Dashboard for issue 
navigation, visualization & 
dispositioning

● Development workflow
● Quality level(s)
● MC/DC testing

Space-Specific 
Functionality

● Eventing & Telemetry 
Subsystem

● C++ PMR allocator
● Sample applications for 

navigation and 
manipulation

● Simulation assets



1
1

www.openrobotics.orgwww.openrobotics.org

● Typically managed using a strict process and proprietary tools
○ Process is often according to some accepted standard, e.g. DO-178C

● Requirements must be complete - no software without requirements - and highly 
detailed

● Multiple levels of requirements - from abstract needs to detailed behaviour timings
● Traceability is essential - source to requirement to implementation and verification, 

and back again
● Requirements ultimately are used to support a certification process

Requirements management in aerospace
More than checklists



1
2

www.openrobotics.orgwww.openrobotics.org

● Requirements are typically non-existent
● Any requirements that do exist are lightly managed (and easily get out-of-date)
● Heavy processes are shunned to avoid discouraging contributions

Requirements management in open source software
What requirements?



1
3

www.openrobotics.orgwww.openrobotics.org

● Heavy-weight requirements process using expensive tools 
is inappropriate for an open-source project

● Need a process and tool(s) that won’t discourage 
contributions
○ Contributors are unlikely to purchase expensive 

requirements management tools
○ Heavy-weight processes discourage drive-by contributors

● Must strike a balance between aerospace’s need for strong 
processes and open-source’s desire for 
ease-of-contributing

Open requirements for Space ROS
Balance competing forces

Strong
processes Open-source



1
4

www.openrobotics.orgwww.openrobotics.org

● Simple requirements management tool providing a 
command-line-and-text-editor based workflow
○ Add and edit requirements
○ Trace between requirements
○ Generate reports

● Based on YAML files stored in a versioned repository
○ Requirements are stored in a human-readable format
○ Easy to parse for additional automation tools
○ Requirements can be written in restricted natural language, e.g. EARS

● Open-source
○ Can be modified to meet our needs
○ Freely available to contributors
○ https://doorstop.readthedocs.io/en/latest/

Tools for open requirements management
Doorstop

https://doorstop.readthedocs.io/en/latest/


1
5

www.openrobotics.orgwww.openrobotics.org

● Graphical tool for creating and managing semi-formal and 
formal requirements

● Stores requirements in a database, with JSON import/export
● Requirements can be written in “FRETish”, which can contain 

linear temporal logic expressions
● Automatic model checking of requirements for

consistency and conflicts
● Although freely available, the learning curve is 

steeper than Doorstop
● Automatic generation of safety monitor(s) from 

requirements expressed FRETish

Tools for open requirements management
FRET



1
6

www.openrobotics.orgwww.openrobotics.org

Management of requirements in Space ROS
Information flows and processes

Doorstop
(Git repository)

FRET

Functional 
requirements

Non-functional 
requirements

Detailed (formalised) 
requirements

Verification 
(test) report

Traceability 
report

Sync

Validate

New requirements

Generate

Traces

Test results

Source code

 Review via PR



1
7

www.openrobotics.orgwww.openrobotics.org

● Doorstop used for:
○ High-level requirements
○ Non-functional requirements
○ Requirements traceability management
○ Artefact generation (e.g. traceability reports)

● FRET used for detailed functional requirements and consistency checks
● Requirements stored in Git (single source of truth)

○ Pull requests provide a chance for requirements review

● Trace to implementation and tests via Git commit hashes

Management of requirements in Space ROS
Key points



1
8

www.openrobotics.orgwww.openrobotics.org

● Increase code quality, provide information supporting verification efforts
● Space ROS provides a suite of static analyzers, including IKOS and Cobra from NASA
● Currently adding dynamic analysis: code coverage and MC/DC testing
● The static analysis tools generate SARIF output

○ Currently, most tools parse the output of the tool

○ Tools should eventually support SARIF directly; would allow for more detailed information in SARIF

● Filtering pass to remove (some) redundancy
○ Currently, removing identical issues

○ Would like to remove semantic equivalents

● The results are made available to the Space ROS Dashboard
○ An archive format that contains analyzer output, filtered output, and metadata

Static Analysis
Meeting the needs of aerospace with open-source analysers



1
9

www.openrobotics.orgwww.openrobotics.org

● DO-178C includes an extension, DO-333, that describes how developers can use static 
analysis in certification

○ DO-333 provides guidance on how formal (mathematical) methods may to produce 
verification evidence suitable for use in certification

○ DO-333 lists Abstract Interpretation as a suitable methodology

● IKOS is a static analysis framework, based on the Theory of Abstract Interpretation
○ Used to develop static analyses that are both precise and scalable
○ The framework makes it accessible to a larger class of static analysis developers

● References

○ https://jorgenavas.github.io/papers/ikos-sefm14.pdf
○ https://github.com/NASA-SW-VnV/ikos

IKOS (Inference Kernel for Open Static Analyzers)
Application of formal methods to support certification

“... computations can be abstracted and reduced to a generalized set of objects and still exhibit the same critical properties 
of the parent program. By reducing the set of objects through abstraction, IKOS is scalable to large complex computer 
programs and presents a sound approach to verification of such programs.”

https://jorgenavas.github.io/papers/ikos-sefm14.pdf
https://github.com/NASA-SW-VnV/ikos


2
0

www.openrobotics.orgwww.openrobotics.org

● A static analysis capability that works well for large code bases
● Fast analysis of general code patterns, common coding flaws, or coding rule compliance

○ Performs lexical analysis to generate a stream of language-level tokens
○ Stores the key information of source code in an extremely simple data structure

● Can be used in one of three modes
○ As an interactive query engine to match patterns with a simple query language
○ Execute inline Cobra programs that can contain arbitrary branching and iteration over the 

token stream to identify more complex types of patterns
○ As an infrastructure for building more elaborate standalone checkers that are compiled 

separately and linked with the Cobra code that builds the central data structure

● References

○ https://software.nasa.gov/software/NPO-50050-1
○ https://github.com/nimble-code/Cobra

Cobra (code browser and analyzer)
An extensible, interactive tool for the analysis of C/C++ code

https://software.nasa.gov/software/NPO-50050-1
https://github.com/nimble-code/Cobra


2
1

www.openrobotics.orgwww.openrobotics.org

Cobra (code browser and analyzer)
An extensible, interactive tool for the analysis of C/C++ code



2
2

www.openrobotics.orgwww.openrobotics.org

SARIF (Static Analysis Results Interchange Format)
Unification of static analysis results

● A JSON-based exchange 
format for the output of 
static analysis tool

● Used by IDEs, code analysis 
tools, continuous integration 
systems, etc.

● SARIF output by all Space 
ROS static analyzers

https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html

https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html


2
3

www.openrobotics.orgwww.openrobotics.org

VSCode SARIF plugin
Making static analysis results visible



2
4

www.openrobotics.orgwww.openrobotics.org

Extending the VSCode SARIF plugin
Making static analysis results visible

● Insight into static analysis, code 
coverage, build status, issue 
burndown, etc.

● A starting point for the open 
source community to extend 
and improve

● Interface to build, test, using 
Earthly (same as CI)

● Integrate with external 
dispositioning systems

● Plugin available on the VSCode 
Marketplace



2
5

www.openrobotics.orgwww.openrobotics.org

Ongoing development
Space ROS 2023+

Foundation
● Regular releases 

Tools and Processes
● Dashboard (continued)
● Auditing support, 

checklists, reports
● Code improvements
● Back-porting requirements
● Requirements analysis

Space-Specific 
Functionality

● cFS/ROS 2 bridge
● Applications



2
6

www.openrobotics.orgwww.openrobotics.org

Open processes and artefacts for community-driven validation

● We’re integrating open source tools and processes to help improve 
software quality
○ Requirements, code analysis, developer workflow, quality levels

● This is done in the context of Space ROS, but could be useful to other domains
● We welcome your contributions and input
● https://github.com/space-ros

https://github.com/space-ros




2
8

www.openrobotics.org

Please fill out the ROS and Gazebo User Survey!



2
9

www.openrobotics.orgwww.openrobotics.org

IKOS (Inference Kernel for Open Static Analyzers)
The IKOS framework architecture

https://jorgenavas.github.io/papers/ikos-sefm14.pdf

https://jorgenavas.github.io/papers/ikos-sefm14.pdf

